首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
甘薯喜高温强光,怕霜冻,耐旱、耐瘠不耐寒。文章就气象条件对甘薯的生长发育及高产栽培中的影响进行系列的分析,有助于提高甘薯品质,增加产量。  相似文献   

2.
采用舟曲县旱地沟植垄膜增水资料,对沟植垄膜田与普通田的土壤气候进行了对比分析。认为沟植垄膜种植由于水分增加,可使热量资源更有效地被作物利用,使玉米的种植高度增加到海拔2200m。  相似文献   

3.
摘 要:开展塔克拉玛干沙漠沙垄起伏地形夏季地表温度观测试验,旨在为塔克拉玛干沙漠环境陆面过程研究提供科学依据。2019年6月7日至9月2日在塔中地区,沿沙垄迎风坡以及背风坡底部、中部、上部、顶点及垄间谷地共设8个地表温度观测点。结果表明:(1)夏季沙垄地表温度最高温出现在垄间谷地,为74.63 ℃,最低温出现在迎风坡底部,为10.52 ℃;地表温度一天中在7:00左右达到最低,15:00左右达到最高。(2)晴天、多云以及浮尘天各观测点地表温度日均变化曲线呈单峰型,降水、扬沙及沙尘暴天呈双峰型;地表温度的最高温与日均值最大值均出现在晴天的垄间谷地,地表温度的最低温及日均值最小值均出现在降水天的迎风坡底部。(3)沙垄顶点与两个底部最大温差范围是顶点与背风坡底部在晴天的温差范围,为0~18.62 ℃,最小温差范围是顶点与迎风坡底部在降水天的温差范围,为0.01~6.18 ℃;迎风坡和背风坡在晴天地表温度温差范围最大,为0.01~16.93 ℃,在降水天温差范围最小,为0.01~4.15 ℃;顶点与两个底部夏季综合温差范围在0~18.62 ℃,迎风坡与背风坡夏季综合温差范围为0~16.93 ℃。塔克拉玛干沙漠地表温度受典型天气影响变化类型多样,沙垄顶点与底部、迎风坡与背风坡地表温度差异受风力及地形作用明显。  相似文献   

4.
闽东南花生、甘薯气象条件分析   总被引:2,自引:0,他引:2       下载免费PDF全文
郑海青 《气象》2003,29(3):53-57
利用闽东南近10多年花生、甘薯的农业气象资料,分析花生、甘薯生产的条件。根据回归统计分析得出以下结论:(1)夏、秋旱是制约闽东南花生、甘薯产量的主要气象灾害。(2)当春花生在6月下旬-7月出现持续无透雨天数>20d,且耕作层土壤相对湿度达30%以下时,将影响花生子粒膨大,造成减产。(3)当8-10月持续无透雨>30d,且耕作层土壤相对湿度达25%以下,将影响甘薯膨大。(4)若6-10月该地出现连续大-暴雨过程,由于旱地耕作层蓄水能力低,将造成水肥大量流失,生态恶化。(5)闽东南旱地土壤蓄水能力低,水资源匮乏,应加大投资力度,将地面灌溉改为喷洒灌溉,既可防止水肥流失,又可提高水的利用率。  相似文献   

5.
为研究不同种植方式下高油酸花生小气候特征,于2020年在商丘国家基准气候站内开展花生分期播种试验,试验设计5月6日、5月26日和6月15日3个播期,按垄作和平作两种方式种植。在5月6日播种的垄上、垄下和平作的花生田内安装温湿度自动记录仪,对比分析不同种植方式对农田气温、相对湿度及产量的影响,研究农田温湿度与基准站气象要素的定量关系。结果表明,种植方式不同,花生农田小气候特征存在差异。不同发育期,垄上和垄下气温均高于平作的,且二者之间的差异白天的大于夜间的。下针-饱果期和饱果-成熟期垄上平均气温分别比平作的高0.5℃和0.9℃,日较差分别比平作的高1.1℃和2.1℃;田间相对湿度平作的高于垄上和垄下的,下针-饱果期和饱果-成熟期垄上相对湿度日较差分别比平作的高11.2%和15.3%。典型晴天和多云天,基准站夜间气温高于垄上、垄下和平作的,白天的气温低于垄上、垄下和平作的;阴雨天垄上气温高于垄下、平作和基准站的。3种天气条件下,平作相对湿度高于垄上、垄下和基准站的。高油酸花生小气候与基准站温湿度之间存在显著的一元线性相关关系。3个播期的垄作花生单株荚果数、单株果重和产量均高于平作的,且呈极...  相似文献   

6.
夏玉米麦垄套种的气候依据夏玉米麦垄套种增产的气候依据是:一是晚秋早播,延长生育时间,充分利用光、温、水资源;二是避开6月上、中旬初夏少雨阶段,使播种出苗有水分保证;三是使夏玉米需水高峰期与降水较多的时段相吻合,避免“卡脖旱”。目前,南阳良种公司推广的...  相似文献   

7.
采用经改进的农业生态区域法,计算福建省29个代表站甘薯光温、气候及气候-土壤生产力。结果表明:人为调节农田水分到最适状态时,可使气候生产力增加1/3以上,水分改善对甘薯的增产率大于其它粮食作物,增产值比水稻大3~4倍;人为调节肥料到最优状态时,可使气候-土壤生产力增加30%,目前福建甘薯潜力利用率仅为55%。根据各级生产力的变化特点,提出福建省粮食安全的对策建议:①稳定水稻种植面积,增加甘薯种植比例;②建设旱涝保收田;③提高土壤肥力,促进甘薯高产;④严格限制非农业用地,控制人口增长。  相似文献   

8.
通过对夏花生生长季气候资源分析发现,影响夏花生生育的关键问题是水份共需不一致。为使水份供需同步.调整播期.推广麦垄点种.是趋利避害,提高花生产量和品质的重要途径之一。  相似文献   

9.
张代槐 《气象》1985,11(12):33-34
实行稻田养鱼,可获得较高的经济效益,如技术措施不当,则往往收效不大,这也是稻田养鱼难以推广的重要原因之一。为摸索稻田养鱼的技术措施,夺取稻田养鱼最佳的经济效益,我们设计了宽沟窄垄免耕半旱田,开展了垄上种稻,沟里养鱼的试验。1983—1984年的试验结果表明,垄种稻、沟养鱼的气象效应明显,经济效益显著。专家们鉴定认为,这是改造低产田,实现稻田产值翻番的一项新技术。  相似文献   

10.
《气象科技》1977,(6):15-15
一、试验目的: 寻找农业增产新途径,为普及大寨县服务。二、试验方法和过程: 1.地点:涿县刁沃公社沿鲁大队农事场。 2.作物和处理:选用一些生育期较短、淀粉含量较高的作物,如夏甘薯和夏玉米。甘薯品种为开花二号和五五三;玉米品种是团结一号。对两种作物分别划出试验小区和对照区,相隔20米以上,面积各为一分。试验小区用塑料布圈围,圈围高度甘薯地为70公分,玉米地为140公分。  相似文献   

11.
在半湿润的南京地区,以微型马铃薯荷兰七号为指示作物,采用平地起垄覆膜的种植方式,分别选用黑色地膜(BM)与普通白色地膜(WM)做比较,并以不覆膜的平地作为对照(CK),分析不同处理对微型马铃薯生理指标、产量以及种植区土壤质量的影响.发现BM处理下微型马铃薯的淀粉质量分数和产量最高,较WM处理增产31.1%,较CK增产43.7%;覆膜处理显著降低了耕层土壤的速效钾质量分数,BM处理下耕层土壤的速效磷质量分数最低,但土壤铵态氮与硝态氮质量分数显著高于其他处理;覆膜处理有效提高了微型马铃薯出苗期的耕层土壤含水量,BM处理下微型马铃薯生育期内的表层土壤温度明显低于WM,且高于对照,对微型马铃薯的生长更有利.  相似文献   

12.
Theoretical and Applied Climatology - This study aimed to identify the global risk of invasion and establishment of Bedellia somnulentella, a pest of the sweet potato crop, for the present and...  相似文献   

13.
基于GIS的马铃薯种植气候区划及风险区划的研究   总被引:16,自引:0,他引:16  
利用地理信息技术及气候资源信息,对内蒙古乌盟地区的主要农作物马铃薯做了多项自然资源空间统计分析,并选定了该地区马铃薯种植的气候区划指标和风险指标。这些指标涉及到马铃薯的种植失败风险和减产风险。利用小网格资源推算法,实现了基本气候资源分布的细化。同时借助于CITYSTAR GIS的二次开发功能,用Visual C^ 编制模型,进行马铃薯气候资源区划和种植风险程度区划的地理制作。研究结果可供农业种植规划部门及农业保险部门使用。  相似文献   

14.
Drought is one of the crucial environmental factors affecting crop production. Synchronizing crop phenology with expected or predicted seasonal soil moisture supply is an effective approach to avoid drought impact. To assess the potential for drought avoidance, this study investigated the long-term climate data of four locations (Bojnourd, Mashhad, Sabzevar, and Torbat Heydarieh) in Khorasan province, in the northeast of Iran, with respect to the four dominant crops (common bean, lentil, peanut, and potato). Weekly water deficit defined as the difference between weekly precipitation and weekly potential evapotranspiration was calculated. Whenever the weekly water deficit was larger than the critical water demand of a crop, the probability for drought was determined. Results showed that Sabzevar has the highest average maximum temperature (24.6 °C), minimum temperature (11.7 °C), weekly evapotranspiration (32.1 mm), and weekly water deficit (28.3 mm) and has the lowest average weekly precipitation (3.8 mm). However, the lowest mean maximum temperature (19.7 °C), minimum temperature (6.9 °C), weekly evapotranspiration (22.5 mm), and weekly water deficit (17.5 mm) occur in Bojnourd. This location shows the shortest period of water deficit during the growing season for all crops except potato, which also experienced drought at the end of the growing season. Sabzevar and Torbat Heydarieh experienced the highest probability of occurrence and longest duration of drought during the growing season for all crops. The result of this study will be helpful for farmers in order to reduce drought impact and enable them to match crop phenology with periods during the growing season when water supply is more abundant.  相似文献   

15.
Light is one of the most important natural resources for plant growth. Light interception (LI) and use efficiency (LUE) are often affected by the structure of canopy caused by growing pattern and agronomy managements. Agronomy practices, such as the ridge–furrow system and plastic film cover, might affect the leaf morphology and then light transmission within the canopy, thus change light extinction coefficient (k), and LI and LUE. The objective of this study is to quantify LI and LUE in rain-fed maize (Zea Mays L.), a major cropping system in Northeast China, under different combinations of ridge–furrow and film covering ratios. The tested ridge–furrow system (DRF: “double ridges and furrows”) was asymmetric and alternated with wide ridge (0.70 m in width and 0.15 m in height), narrow furrow (0.10 m), narrow ridge (0.40 m in width and 0.20 m in height), and narrow furrow (0.10 m). Field experiments were conducted in 2013 and 2014 in Jilin Province, Northeast China. Four treatments were tested: no ridges and plastic film cover (control, NRF), ridges without film cover (DRF0), ridges with 58% film cover (DRF58), and ridges with 100% film cover (DRF100). DRF0 significantly increased LI by 9% compared with NRF, while film cover showed a marginal improvement. Specific leaf area in DRF experiments with film cover was significantly lower than in NRF, and leaf angle was 16% higher than in NRF, resulting in a 4% reduction in k. LUE of maize was not increased by DRF0, but was significantly enhanced by covering film in other DRF experiments, especially by 22% in DRF100. The increase of LUE by film cover was due to a greater biomass production and a lower assimilation portioning to vegetative organs, which caused a higher harvest index. The results could help farmers to optimize maize managements, especially in the region with decreased solar radiation under climate change.  相似文献   

16.
Summary Flow visualization experiments on stably stratified flow over ridges and valleys formed by a pair of ridges were conducted in a large towing tank filled with stratified salt water. The ambient flow was normal to the axis of the ridges. Three experimental parameters were varied during the study: the steepness of the ridges, the separation distance between the ridges and the Froude number. The flow field in the valley was strongly influenced by flow separation from the lee side of the upstream ridge. For the gentle and intermediate ridges with maximum slopes of 13° and 27°, this separation was controlled by the lee waves when their wavelength was less than or equal to the width of the ridge. The flow field in the valley was similar to that downstream of a single ridge. For the steep ridge with a maximum slope of 40°, separation from the lee side of the upstream ridge and the flow field in the valley were influenced significantly by the presence of the downstream ridge.With 13 FiguresOn assignment from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce.  相似文献   

17.
We study the activity of wind-blown sand and its effects on the evolution of feathered sand ridges in the Kumtagh Desert, China, and attempt to reveal the formation process of feathered sand ridges using wind-tunnel experiments, remote sensing data, and detailed field observations from 2005 to 2008. The prevailing wind direction in the Kumtagh Desert is easterly in winter and north-easterly in other seasons. The average annual wind speed is 5.9 ms−1, and winds sufficiently strong to entrain sand occur on 143 days per annum. The sand transport rate within 0.4 m of the ground is strongly influenced by local landforms, and is related to wind speed by a power function. Wind erosion occurs on the crest, the windward slope of crescent sand ridges and inter-ridge sand strips, where the blowing sand cloud is in an unsaturated state; in contrast, sand accumulation occurs on the leeward slope of the crescent sand ridges, where the blowing sand cloud is in an over-saturated state. These results indicate that the development of feathered sand ridges in the Kumtagh Desert is mainly controlled by the local wind regime. The dominant winds (from the north, north-north-east and north-east) and additional winds (from the east-north-east, east and east-south-east) determine the development of crescent sand ridges, but winds that are approximately parallel to sand ridges form the secondary inter-ridge sand strips.  相似文献   

18.
利用NCEP/NCAR再分析资料、日本气象厅提供的TBB资料研究了 1 998年 7月西太平洋副热带高压突然偏南的原因。结果表明 ,西太平洋副高脊线突然“南撤”有其一定局限性 ,事实上应是副热带高压脊线在南侧的一次“重建”过程。针对这次重建 ,发现 1 998年 7月上中旬在西太平洋副热带地区存在南北两个高压脊 ,据此本文提出了副热带高压双脊线的概念 ,并着重揭示了这次西太平洋副热带高压双脊线的基本演变特征、环流场和温湿场结构、可能的形成机制及其对 1 998年夏季长江流域“二度梅”的影响。分析表明西太平洋副热带高压双脊线时期具有与单脊线时期明显不同的环流特征和温湿场结构 ,其北侧脊线附近的特征与传统上单脊线副热带高压的特征较一致 ,但南侧脊线附近则更多的具有低纬度系统的特点 ;这次双脊线过程与赤道缓冲带北上并与副热带高压打通合并变性及热带对流云团的演变有密切关系。此外 ,文中还通过中国台站降水资料探讨了副热带高压双脊线的维持对中国东部雨型的影响 ,指出西太平洋副热带高压双脊线的出现改变了原有的水汽输送路径 ,从而在中国东部出现两条雨带 ,呈倒 7字型 ,分别与副热带高压北、南侧脊线相对应。这些结果为西太平洋副热带高压演变规律和机制的研究提供了新的线索  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号