首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Under the impacts of climate change and human activities, great uncertainties still exist in the response of climate extremes, especially in Central Asia(CA). In this study, we investigated spatial-temporal variation trends and abrupt changes in 17 indices of climate extremes, based on daily climate observations from 55 meteorological stations in CA during 1957–2005. We also speculated as to which atmospheric circulation factors had the greatest impacts on climate extremes. Our results indicated that the annual mean temperature(Tav), mean maximum and minimum temperature significantly increased at a rate of 0.32℃/10 a, 0.24℃/10 a and 0.41℃/10 a, respectively, which was far higher than the increasing rates either globally or across the Northern Hemisphere. Other temperature extremes showed widespread significant warming trends, especially for those indices derived from daily minimum temperature. All temperature extremes exhibited spatially widespread rising trends. Compared to temperature changes, precipitation extremes showed higher spatial and temporal variabilities. The annual total precipitation significantly increased at a rate of 4.76 mm/10 a, and all precipitation extremes showed rising trends except for annual maximum consecutive dry days(CDD), which significantly decreased at a rate of –3.17 days/10 a. On the whole, precipitation extremes experienced slight wetter trends in the Tianshan Mountains, Kazakhskiy Melkosopochnik(Hill), the Kyzylkum Desert and most of Xinjiang. The results of Cumulative Deviation showed that Tav and Txav had a significant abrupt change around 1987, and all precipitation indices experienced abrupt changes in 1986. Spearman's correlation analysis pointed to Siberian High and Tibetan Plateau Index_B as possibly being the most important atmospheric circulation factors affecting climate extremes in CA. A full quantitative understanding of these changes is crucial for the management and mitigation of natural hazards in this region.  相似文献   

2.
WenWen Wang 《寒旱区科学》2013,5(2):0240-0250
Based on daily maximum and minimum surface air temperature and precipitation records at 48 meteorological stations in Xinjiang, the spatial and temporal distributions of climate extreme indices have been analyzed during 1961-2008. Twelve temperature extreme indices and six precipitation extreme indices are studied. Temperature extremes are highly correlated to annual mean temperature, which appears to be significantly increasing by 0.08 °C per year, indicating that changes in temperature extremes reflect consistent warming. The warming tendency is clearer at stations in northern Xinjiang as reflected by mean temperature. The frequencies of cold days and nights have both decreased, respectively by 0.86 and 2.45 d/decade, but the frequencies of warm days and nights have both increased, respectively by +1.62 and +4.85 d/decade. Over the same period, the number of frost days shows a statistically significant decreasing trend of 2.54 d/decade. The growing season length and the number of summer days exhibit significant increasing trends at rates of +2.62 and +2.86 d/decade, respectively. The diurnal temperature range has decreased by 0.28 °C/decade. Both annual extreme low and high temperatures exhibit significant increasing trend, with the former clearly larger than the latter. For precipitation indices, regional annual total precipitation shows an increasing trend and most other precipitation indices are strongly correlated with annual total precipitation. Average wet day precipitation, maximum 1-day and 5-day precipitation, and heavy precipitation days show increasing trends, but only the last is statistically significant. A decreasing trend is found for consecutive dry days. For all precipitation indices, stations in northwestern Xinjiang have the largest positive trend magnitudes, while stations in northern Xinjiang have the largest negative magnitudes.  相似文献   

3.
Global climate change has been evident in many places worldwide. This study provides a better understanding of the variability and changes in frequency, intensity, and duration of temperature, precipitation, and climate extremes in the Extensive Hexi Region, based on meteorological data from 26 stations. The analysis of average, maximum, and minimum temperatures revealed that statistically significant warming occurred from 1960 to 2011. All temperature extremes displayed trends consistent with warming, with the exception of coldest-night temperature(TNn) and coldest-day temperature(TXn), which were particularly evident in high-altitude areas and at night. Amount of precipitation and number of rainy days slowly increased with no significant regional trends, mainly occurring in the Qilian Mountains and Hexi Corridor. The significance of changes in precipitation extremes during 1960–2011 was high, but the regional trends of maximum 5-day precipitation(RX5day), the average precipitation on wet days(SDII), and consecutive wet days(CWD) were not significant. The variations in the studied parameters indicate an increase in both the extremity and strength of precipitation events, particularly in higher-altitude regions. Furthermore, the contribution from very wet precipitation(R95) and extremely wet precipitation(R99) to total precipitation also increased between 1960 and 2011. The assessment of these changes in temperature and precipitation may help in developing better management practices for water resources. Future studies in the region should focus on the impact of these changes on runoffs and glaciers.  相似文献   

4.
Based on monthly mean, maximum, and minimum air temperature and monthly mean precipitation data from 10 meteorological stations on the southern slope of the Mt. Qomolangma region in Nepal between 1971 and 2009, the spatial and temporal characteristics of climatic change in this region were analyzed using climatic linear trend, Sen's Slope Estimates and Mann-Kendall Test analysis methods. This paper focuses only on the southern slope and attempts to compare the results with those from the northern slope to clarify the characteristics and trends of climatic change in the Mt. Qomolangma region. The results showed that: (1) between 1971 and 2009, the annual mean temperature in the study area was 20.0℃, the rising rate of annual mean temperature was 0.25℃/10a, and the temperature increases were highly influenced by the maximum temperature in this region. On the other hand, the temperature increases on the northern slope of Mt. Qomolangma region were highly influenced by the minimum temperature. In 1974 and 1992, the temperature rose noticeably in February and September in the southern region when the increment passed 0.9℃. (2) Precipitation had an asymmetric distribution; between 1971 and 2009, the annual precipitation was 1729.01 mm. In this region, precipitation showed an increasing trend of 4.27 mm/a, but this was not statistically significant. In addition, the increase in rainfall was mainly concentrated in the period from April to October, including the entire monsoon period (from June to September) when precipitation accounts for about 78.9% of the annual total. (3) The influence of altitude on climate warming was not clear in the southern region, whereas the trend of climate warming was obvious on the northern slope of Mt. Qomolangma. The annual mean precipitation in the southern region was much higher than that of the northern slope of the Mt. Qomolangma region. This shows the barrier effect of the Himalayas as a whole and Mt. Qomolangma in particular.  相似文献   

5.
This study examines spatial and temporal changes in 16 extreme temperature indices at 37 weather stations in Xinjiang and their associations with changes in climate means during 1961–2008. Linear regression analyses reveal that significant increasing trends in temperature were observed over Xinjiang, with the rate of 0.13 °C/decade, 0.24 °C/decade, and 0.52 °C/decade for annual mean temperature, annual maximum, and minimum temperature, respectively. Annual frequency of cool nights (days) has decreased by -2.45 days/decade (-0.86 days/decade), whereas the frequency of warm nights (days) has increased by 4.85 days/decade (1.62 days/decade). Seasonally, the frequencies of summer warm nights and days are changing more rapidly than the corresponding frequencies for cool nights and days. However, normalization of the extreme and mean series shows that the rate of changes in extreme temperature events are generally less than those of mean temperatures, except for winter cold nights which are changing as rapidly as the winter mean minimum temperatures. These results indicate that there have been seasonally and diurnally asymmetric changes in extreme temperature events relative to recent increases in temperature means in Xinjiang.  相似文献   

6.
The change characteristics and trends of the regional climate in the source region of the Yellow River, and the response of runoff to climate change, are analyzed based on observational data of air temperature, precipitation, and runoff at 10 main hydrological and weather stations in the region. Our results show that a strong signal of climate shift from warm-dry to warm-humid in the western parts of northwestern China (Xinjiang) and the western Hexi Corridor of Gansu Province occurred in the late 1980s, and a same signal of climate change occurred in the mid-2000s in the source region of the Yellow River located in the eastern part of northwestern China. This climate changeover has led to a rapid increase in rainfall and stream runoff in the latter region. In most of the years since 2004 the average annual precipitation in the source region of the Yellow River has been greater than the long-term average annual value, and after 2007 the runoff measured at all of the hydrologic sections on the main channel of the Yellow River in the source region has also consistently exceeded the long-term average annual because of rainfall increase. It is difficult to determine the prospects of future climate change until additional observations and research are conducted on the rate and temporal and spatial extents of climate change in the region. Nevertheless, we predict that the climate shift from warm-dry to warm-humid in the source region of the Yellow River is very likely to be in the decadal time scale, which means a warming and rainy climate in the source region of the Yellow River will continue in the coming decades.  相似文献   

7.
On the basis of the summer daily-precipitation meteorological data collected from weather stations across Northwest China from 1957 to 2016, this study evaluated the trends in 12-daily precipitation indices in the summer season and their relations with air temperature. Precipitation-event intensity, which was averaged over the total study area, increased in recent decades although the total precipitation continuously decreased. In particular, intensity generally decreased in the northern and eastern parts and increased in the southern and western parts of the study area. None of the 12 precipitation indices was significantly correlated with temperature in Xinjiang; R95 N(number of events with precipitation greater than the long-term95 th percentile), RX1 day(greatest 1-day total precipitation), PI(simple daily intensity), and R10(number of heavy-precipitation days) were significantly and positively correlated with temperature in Qinghai–Gansu. However, low correlation coefficients were observed. In the Loess Plateau, P(total precipitation), WS(maximum number of consecutive wet days),R95 N, and WD(number of wet days) were significantly and negatively correlated with temperature, whereas Gini(gini concentration index) and DS(maximum number of consecutive dry days) were significantly and positively correlated with temperature. Results of the study suggested that climate shift was evident in terms of daily precipitation, and the study area faced new challenges involving precipitation-event intensity increasing in the southwestern part and unevenly dispersing in the northwest.  相似文献   

8.
The wavelet analysis method is used to analyze the annual and winter temperature data of 98 observation stations in China in eight climate zones during the last 50 years (1961-2009). The periodicities of temperature changes are investigated, and the possible temperature change trends in China in the next 20 years (2012-2029) are also predicted. Our results show that in the inter-annual temperature variability there are pervasive quasi-3- to quasi-4-year cycles, and these cycle changes are relatively steady. The periodic characteristics of the annual temperature changes are clearly different between northern and southern China, and our period superimposition extrapolation shows that both annual and winter temperatures in China will continue to increase in the next 20 years, more so in northern China and in the Qinghai-Xizang Plateau (QXP) than in the southern region, except in the southwest. If temperatures follow historic increasing linear trends, the overall temper- ature is expected to increase by 1℃ between 2010 and 2029.  相似文献   

9.
西北地区山区融雪期气候变化对径流量的影响(英文)   总被引:5,自引:0,他引:5  
Water resources in the arid land of Northwest China mainly derive from snow and glacier melt water in mountainous areas. So the study on onset, cessation, length, tempera-ture and precipitation of snowmelt period is of great significance for allocating limited water resources reasonably and taking scientific water resources management measures. Using daily mean temperature and precipitation from 8 mountainous weather stations over the pe-riod 1960?2010 in the arid land of Northwest China, this paper analyzes climate change of snowmelt period and its spatial variations and explores the sensitivity of runoff to length, temperature and precipitation of snowmelt period. The results show that mean onset of snowmelt period has shifted 15.33 days earlier while mean ending date has moved 9.19 days later. Onset of snowmelt period in southern Tianshan Mountains moved 20.01 days earlier while that in northern Qilian Mountains moved only 10.16 days earlier. Mean precipitation and air temperature increased by 47.3 mm and 0.857℃ in the mountainous areas of Northwest China, respectively. The precipitation of snowmelt period increased the fastest, which is ob-served in southern Tianshan Mountains, up to 65 mm, and the precipitation and temperature in northern Kunlun Mountains increased the slowest, an increase of 25 mm and 0.617℃, respectively, while the temperature in northern Qilian Mountains increased the fastest, in-creasing by 1.05℃. The annual runoff is also sensitive to the variations of precipitation and temperature of snowmelt period, because variation of precipitation induces annual runoff change by 7.69% while change of snowmelt period temperature results in annual runoff change by 14.15%.  相似文献   

10.
In this study, the spatial distribution and changing trends of agricultural heat and precipitation resources in Northeast China were analyzed to explore the impacts of future climate changes on agroclimatic resources in the region. This research is based on the output meteorological data from the regional climate model system for Northeast China from 2005 to 2099, under low and high radiative forcing scenarios RCP4.5(low emission scenario) and RCP8.5(high emission scenario) as proposed in IPCC AR5. Model outputs under the baseline scenario, and RCP4.5 and RCP8.5 scenarios were assimilated with observed data from 91 meteorological stations in Northeast China from 1961 to 2010 to perform the analyses. The results indicate that:(1) The spatial distribution of temperature decreases from south to north, and the temperature is projected to increase in all regions, especially under a high emission scenario. The average annual temperature under the baseline scenario is 7.70°C, and the average annual temperatures under RCP4.5 and RCP8.5 are 9.67°C and 10.66°C, respectively. Other agricultural heat resources change in accordance with temperature changes. Specifically, the first day with temperatures ≥10°C arrives 3 to 4 d earlier, the first frost date is delayed by 2 to 6 d, and the duration of the growing season is lengthened by 4 to 10 d, and the accumulated temperature increases by 400 to 700°C·d. Water resources exhibit slight but not significant increases.(2) While the historical temperature increase rate is 0.35°C/10 a, the rate of future temperature increase is the highest under the RCP8.5 scenario at 0.48°C/10 a, compared to 0.19°C/10 a under the RCP4.5 scenario. In the later part of this century, the trend of temperature increase is significantly faster under the RCP8.5 scenario than under the RCP4.5 scenario, with faster increases in the northern region. Other agricultural heat resources exhibit similar trends as temperature, but with different specific spatial distributions. Precipitation in the growing season generally shows an increasing but insignificant trend in the future, with relatively large yearly fluctuations. Precipitation in the eastern region is projected to increase, while a decrease is expected in the western region. The future climate in Northeast China will change towards higher temperature and humidity. The heat resource will increase globally, however its disparity with the change in precipitation may negatively affect agricultural activities.  相似文献   

11.
近60a来新疆不同海拔气候变化的时空特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
全球变暖是当前全球气候变化研究的热点之一,新疆深居亚欧大陆内陆,地形气候复杂,探讨该区域气候变化与海拔的关系对全球气候变化研究具有重要的参考意义。基于1958—2017年新疆41个气象站的月和年平均气候数据,采用一元线性回归、Mann Kendall(M-K)趋势分析和突变检验等方法分析该地区气候变化的时空分布与海拔的关系。结果表明:1958—2017年新疆年均气温、年均降水量均呈上升趋势,但增加幅度具有时间和空间差异。在时间上,北疆四季平均气温增温幅度均大于南疆(冬季除外),四季降水量增幅北疆大于南疆(夏季除外);在空间上,北疆气温和降水的增幅均大于南疆。研究区各个站点气温呈现出南部高而北部低的空间格局,年均降水量北部多,南部低。各个站点气温倾向率总体随海拔增加而减少,年均降水量变化率随海拔升高而增加,在不同海拔带内部存在差异。综上所述,受全球气候变暖的影响,近60 a来新疆年均气温和年均降水量均呈上升趋势,尤其是北疆对全球气候变暖的响应较为敏感。  相似文献   

12.
新疆地表水资源对气候变化的响应初探   总被引:30,自引:10,他引:20  
何清  袁玉江  魏文寿  龚原 《中国沙漠》2003,23(5):493-496
计算新疆三大区域地表水资源与气候的相关性,建立两者间的回归方程,进而探讨新疆地表水资源对气候变化的响应,得到以下几点主要结论:①新疆地表水资源对气候变化的响应具有明显的地域特点:北疆以对水文年降水的正响应为主;南疆以对5~9月温度的正响应为主,以对高山区前年的水文年降水的正响应为辅;东疆对水文年降水的正响应及5~9月温度的负响应并重,对降水的响应更重要些。②北疆:当北疆8站水文年平均降水偏多(或偏少)10%时,北疆地表水资源会偏多或偏少7.2%。③东疆:当沁城5~9月平均温度为多年平均值时,巴音布鲁克水文年降水变化±10%,东疆地表水资源会出现±5.4%的变化;当巴音布鲁克水文年降水为多年平均值时,沁城5~9月平均温度偏高(或偏低)1℃,东疆地表水资源会减少(或增多)8.3%。④南疆:当南疆4站5~9月平均温度为多年平均值时,塔什库尔干前年的水文年降水变化±10%,南疆地表水资源会出现±1.3%的变化;当塔什库尔干前年的水文年降水为多年平均值时,南疆4站5~9月平均温度偏高(或偏低)1℃,南疆地表水资源会增多(或减少)11.7%。  相似文献   

13.
新疆不同季节降水气候分区及变化趋势   总被引:13,自引:5,他引:8  
利用新疆88个测站1961—2006年逐日降水量资料,采用EOF(主成分分析)、REOF(旋转主成分分析)、线性趋势、kendall-τ检验以及累积距平、t检验、信噪比相结合等方法,对新疆四季降水量的空间特征、变化趋势以及突变时间等进行了对比诊断分析\.结果表明,新疆四季降水量EOF的前3个载荷向量场均表现为全疆一致的降水偏多或偏少型、南北疆反变化的南多(少)北少(多)型以及东西反向的东多(少)西少(多)型等3大整体异常结构;在同一约束条件下,不同季节REOF分析所揭示的降水气候分区不同,冬季大致可划分为3个区,春季6个区,夏季7个区,秋季5个区;除南疆偏西地区冬季降水量未出现显著突变增加趋势外,新疆大部地区于1986年前后冬夏降水量同时显著突变增多,与其上空大气可降水量(APW)的增加有关;北疆春季降水量既没有显著的增加趋势,也未发生过突变;南疆大部地区春季降水量曾出现过显著突变增加,但突变时间早晚不一;从长期变化趋势看,北疆北部、中天山两侧及其以东地区秋季降水量虽增加不显著,但在1978年前后出现过突变增加,是季降水量突变最早区域;北疆西部冬、夏、秋降水量均显著增加,是新疆降水量增加最敏感区域,但秋季降水量的突变增加是从1997年开始的,比冬夏突变晚11 a左右,比其东部地区偏晚30 a左右。  相似文献   

14.
西北干旱区极端气候水文事件特征分析   总被引:7,自引:6,他引:1  
中国西北干旱区是对全球变化响应最敏感地区之一。气候变化导致气候水文系统的不稳定性加剧,极端气候水文事件的频度和强度增大、重现期缩短,灾害程度加重。借助资料分析和文献阅读,对过去50 a中国西北干旱区极端气候/水文事件的发生规律、影响机制及未来趋势进行了梳理总结,主要结论如下:(1)西北干旱区的极端气候/水文事件呈逐年增加趋势,特别是20世纪70年代以来增加显著;气温和降水极值都表现为一致的增强趋势。降水量的增多是降雨频率和强度共同增加的结果。(2)中国西北干旱区低温、降水极值在1986年左右发生了明显的突变,高温极值在1996年左右发生突变。突变后,气温和降水极值均发生了显著增强变化。(3)北半球极涡面积指数和青藏高原指数对西北干旱区气候极值变化具有重要影响,冬季极值还受冬季北极涛动和北大西洋涛动等影响。(4)新疆地区有变暖湿趋势,而河西走廊东部则为变干趋势。强大的西伯利亚高压和增强的贝加尔湖气流造成新疆地区降水增加,而河西走廊干旱增加是由东亚夏季风减弱引起的。  相似文献   

15.
新疆水文水资源变化及对区域气候变化的响应   总被引:6,自引:1,他引:5  
Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-term trend and jump point of time series, the surface runoff, mean annual temperature and annual precipitation. Meanwhile, the paper analyzed the relationship between runoff and temperature and precipitation, and the flood frequency and peak flow. Results showed that climate of all parts of Xinjiang conformably has experienced an increase in temperature and precipitation since the mid-1980s. Northern Xinjiang was the area that changed most significantly followed by southern and eastern Xinjiang. Affected by temperature and precipitation variation, river runoff had changed both inter-annually and intra-annually. The surface runoff of most rivers has increased significantly since the early 1990s, and some of them have even witnessed the earlier spring floods, later summer floods and increasing flood peaks. The variation characteristics were closely related with the replenishment types of rivers. Flood frequency and peak flow increased all over Xinjiang. Climate warming has had an effect on the regional hydrological cycle.  相似文献   

16.
张冉  刘晓东 《地理科学》2009,29(5):679-683
利用中全新世暖期和21世纪末期的多模式气候模拟资料,对这两个时期东亚地区夏季降水变化相似型进行分析。结果表明,东亚地区中全新世与21世纪末气候变暖情景下的夏季降水变化分布型存在一定的相似性,尤其反映在两个关键区上:青藏高原南部降水变化均出现增多,增幅达到1.5 mm/d以上;新疆西南部降水变化均出现减少,减少幅度达到0.1 mm/d以上,且中全新世降水模拟变化结果与地质气候记录定性吻合。因此东亚地区全新世暖期夏季降水变化在一定程度上可作为未来夏季降水变化的历史相似型。  相似文献   

17.
Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-term trend and jump point of time series, the surface runoff, mean annual temperature and annual precipitation. Meanwhile, the paper analyzed the relationship between runoff and temperature and precipitation, and the flood frequency and peak flow. Results showed that climate of all parts of Xinjiang conformably has experienced an increase in temperature and precipitation since the mid-1980s. Northern Xinjiang was the area that changed most significantly followed by southern and eastern Xinjiang. Affected by temperature and precipitation variation, river runoff had changed both inter- annually and intra-annually. The surface runoff of most rivers has increased significantly since the early 1990s, and some of them have even witnessed the earlier spring floods, later summer floods and increasing flood peaks. The variation characteristics were closely related with the replenishment types of rivers. Flood frequency and peak flow increased all over Xinjiang. Climate warming has had an effect on the regional hydrological cycle.  相似文献   

18.
新疆气候变化及其对生态环境的影响   总被引:86,自引:31,他引:55  
近100年来,中国西部地区从19世纪末到20世纪初气温开始上升,20世纪40年代达到最高.以后气温下降.大约在70年代初达到最低.以后气温持续上升.增温主要出现在1970年以后。根据新疆56个气象观测台站的气温资料统计,年均温呈稳定的上升趋势。滑动t检验表明1980年是气温突变的转折点。新疆已有的气象观测记录表明.新疆温度变化和全国的变化较为一致。新疆降水量的变化比较复杂.分东疆、北疆、南疆加以讨论.南北疆降水增加明显,东疆则变化不大。降水量的增量北疆最大东疆最少,而降水量的增幅则南疆最大东疆最少。20世纪80年代中期以来,沙尘暴发生日数在波动中减少,与大风发生日数有很强的一致性。70年代以来。温度的升高,局部地区的降水明显,增加对新疆生态环境的影响进行了分析。  相似文献   

19.
In this paper, the monthly precipitation and temperature data collected at 7 stations in the Ili River Basin from 1961 to 2007 were analyzed by means of simple regression analysis, running mean, db6 wavelet function and Mann-Kendall test. This study revealed the characteristics of climate change and abrupt change points of precipitation and temperature during different time scales in the Ili River Basin within the past 50 years. The results showed that the precipitation increased from the mid-1980s until 2000 and has continued to increase at a smaller magnitude since 2000. Over the studied period, the precipitation increased significantly during the summer and winter months. The temperature increased greatly in the late 1980s, and has continued to show an increasing trend from the year 2000 to present. The temperature increases were most significant during the summer, autumn and winter months. In terms of different geographies, the temperature increase was significant during the winter in the plains and hilly regions; the increase was also significant during autumn in the intermontane basins. The climate change trends in the Ili River Basin were consistent with the changing trends of the North Atlantic Oscillation and the plateau monsoon.  相似文献   

20.
新疆伊犁河流域气候变化(英文)   总被引:3,自引:0,他引:3  
In this paper, the monthly precipitation and temperature data collected at 7 stations in the Ili River Basin from 1961 to 2007 were analyzed by means of simple regression analysis, running mean, db6 wavelet function and Mann-Kendall test. This study revealed the characteristics of climate change and abrupt change points of precipitation and temperature during different time scales in the Ili River Basin within the past 50 years. The results showed that the precipitation increased from the mid-1980s until 2000 and has continued to increase at a smaller magnitude since 2000. Over the studied period, the precipitation increased significantly during the summer and winter months. The temperature increased greatly in the late 1980s, and has continued to show an increasing trend from the year 2000 to present. The temperature increases were most significant during the summer, autumn and winter months. In terms of different geographies, the temperature increase was significant during the winter in the plains and hilly regions; the increase was also significant during autumn in the intermontane basins. The climate change trends in the Ili River Basin were consistent with the changing trends of the North Atlantic Oscillation and the plateau monsoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号