首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
通过资料分析,挑选了1965年12月和1968年11月的两次强加拿大型增温作为研究对象来研究加拿大型增温过程中环流的变化及异常.两次加拿大型增温过程中平流层高层的增温不明显,只是在平流层中低层有较弱的增温过程,并且增温过程中所形成的纬向东风较弱,持续的时间较短.从距平场来看,两次加拿大型增温使得平流层极涡环流减弱,但加拿大型增温所造成的环流异常明显要比强爆发性增温所造成的异常强度弱.另外,两次加拿大增温过程中没有发现爆发性增温前的“预先”过程.一般而言,上传的行星波是冬季平流层环流扰动的重要影响因素,两次加拿大型增温过程中第0天前后都有行星波上传的增加,这与爆发性增温有明显的不同.北极涛动指数随时间和高度的变化显示由两次加拿大型增温所造成极涡异常能够形成北极涛动异常的下传,但两次加拿大型增温过程中的北极涛动异常都没有能够到达对流层低层.  相似文献   

2.
兰晓青  陈文 《大气科学》2013,37(4):863-872
利用NCEP-NCAR 再分析资料分析了2011~2012 年冬季发生在欧亚大陆的一次异常低温严寒事件的大气环流演变过程以及可能的成因。这次低温事件,主要出现在2012 年1 月下旬至2 月上旬,持续大约3 周左右,非常强的低温异常覆盖了几乎整个欧洲以及东亚的西伯利亚、蒙古国和我国东北、华北等地。这次低温事件的演变与对流层北极涛动(AO)由正位相转变为负位相的时间相匹配,意味着AO 可能发挥重要作用。进一步分析表明,前期行星波的异常上传导致平流层发生爆发性增温现象,极夜急流减弱,AO 位相首先在平流层由正变负;在2~3 周左右的时间内,平流层AO 异常信号逐渐下传,使得对流层AO 也转为负位相;随后,乌拉尔山阻塞高压异常发展,极区的冷空气不断向南爆发,先后在东亚和欧洲造成剧烈的降温,导致低温严寒事件。因此,考虑平流层环流的异常可能有助于提高欧亚大陆冬季低温严寒事件的预测能力。  相似文献   

3.
春季南极昭和站上空增温与臭氧含量和分布的关系   总被引:4,自引:1,他引:4  
本文利用南极昭和站1966—1979年的臭氧和高空气象资料,讨论了春季南极大气爆发性增温及其与臭氧总量、臭氧分压垂直分布的关系,发现如下事实:1.平流层爆发性增温与臭氧总量突变有三种类型,即一次突变型,两次突变型和一次突变与一次缓变混合型;2.平流层爆发性增温3—5天后,对流层上部也有一次剧烈升温;3.增温过程自平流层上部向对流层下传时,伴随着臭氧分压增压中心逐渐向下传递;在平流层各等压面上,臭氧分压变化与气温变化值之间有较好的正相关,相关系数为0.85.  相似文献   

4.
平流层爆发性增温动力机制的初步研究   总被引:1,自引:0,他引:1  
翁衡毅 《大气科学》1984,8(3):304-314
本文用一个β平面纬向通道非绝热准地转的三层模式,研究平流层爆发性增温的动力机制.根据平均场对扰动的影响、扰动对平均场的影响以及平流层和对流层相互作用的解析表达式,得出有利于爆发性增温有关的自由行波异常增幅的大气条件.主要包括对流层的强感热交换、强切变和平流层的小静力稳定度. 模式大气的纬向平均温度和纬向风场变化都只由扰动热输送引起.整个增温过程按其产生、发展和消失的不同机制可分成三个时期:增温前期、增温盛期和增温后期.这些机制可以大致说明一些爆发性增温期间平流层和对流层大气环流出现异常以及随后又恢复到正常  相似文献   

5.
使用国家气候中心大气环流模式BCC_AGCM2.1的30年模拟试验资料,对平流层纬向环流场、高空急流、极涡及爆发性增温过程进行了数值模拟研究,并使用欧洲中期天气预报中心(ECMWF)和美国国家环境预报中心(NCEP)的再分析资料对模式输出结果进行了对比、分析。结果表明:(1) 在观测海温、二氧化碳、气溶胶等外强迫地驱动下,BCC模式能够很好地再现出与再分析资料一致的平流层纬向平均风场、温度场的分布特征和季节变化过程;模拟得到的温度廓线和高空急流与再分析资料的主要差别出现在南、北半球冬季的中高纬度地区;模拟得到的平流层温度普遍偏低,主要的差异位于对流层顶区域和平流层高层。(2) 模拟的对流层上层的副热带急流位置偏南、强度也偏弱,而平流层中的绕极极夜急流则位置偏北、强度更大。这样的急流分布特征使模拟的行星波向赤道的波导更强,向极的波导偏弱;同时由于模式中本身可以形成的行星波就比再分析资料弱,因此导致模拟结果中北半球冬季的平流层极涡更加稳定、极区温度更低。(3) BCC模式对于平流层极涡的季节变化特征模拟得较好,但对强极涡扰动过程,即北半球冬季的平流层爆发性增温(SSW)事件则模拟效果不佳,不论是增温事件出现的频率,还是增温的时间、强度,模拟结果和再分析资料都还存在一定偏差,需要在今后的工作中逐步改善。  相似文献   

6.
2003~2004年冬季平流层爆发性增温动力诊断分析   总被引:4,自引:1,他引:3  
陆春晖  刘毅  陈月娟 《大气科学》2009,33(4):726-736
利用逐日的欧洲中尺度天气预报中心(ECMWF)60层模式资料, 对2003年12月~2004年2月期间发生的一次非典型的爆发性增温中平流层结构的变化过程进行动力学诊断分析。充分利用资料层次高(最高层为0.1 hPa)和垂直分辨率高(垂直方向共60层)的优势, 通过对不同高度等熵面位涡分布的分析, 研究了极涡在平流层爆发性增温(SSW)发生前后的变化发展; 通过对EP通量及其散度的分析, 研究了SSW过程中行星波的变化特点; 通过对剩余环流的分析, 研究了在SSW过程中经圈环流的变化及其对动力过程的影响。得出: (1) 2003/2004年SSW增温过程持续时间长、强度大; (2) 增温最早发生在平流层上层并向下传播, 在10 hPa形成较强东风带后, 上层西风环流迅速恢复, 极涡再度形成, 下层则增温持续; (3) SSW前后行星波活动频繁, 有长时间多次的上传, 且以1波作用为主, 2波对其进行了补充; (4) 在SSW过程前后, 平流层中的剩余环流发生反转, 影响了平流层中、 高纬地区和低纬地区的物质交换以及上下层物质的重新分配。这一系列的工作为今后进一步研究平流层、 对流层交换, 发展完善气候模式打下基础。  相似文献   

7.
冬季SSW低频特性及平流层低层和对流层中层环流异常   总被引:3,自引:0,他引:3  
研究了1983-1984年冬季及1985-1986年冬季平流层爆发性增温(简记为SSW,下同)的活动特征,发现SSW的活动具有30-60天的季节内低频振荡特性,通过对1985-1986年冬季SSW和反SSW时段温压场特征的对比分析,发现SSW事件不仅引起平流层低层环流的异常,而且在对流层中层的环流也有明显的异常,甚至表现更显著。伴随着SSW和反SSW的低频循环,极涡流型、中高纬和中低纬环流的经向度  相似文献   

8.
利用南极16站30余年地面至30hPa10层月平均气温距平序列资料,采用最大熵功率谱方法,研究了南极对流层至平流层下部气候变化的长期趋势和周期性特征,并讨论了平流层(对流层)气候变化与南极臭氧总量(南半球500hPa环流)变化之间的联系。指出:南极气温具有明显的长期趋势和周期性变化;平流层下部显着变冷、对流层增暖,变化最大层高度在100、700hPa,最大降冷速率远大于增暖速率,气层稳定度趋于减弱;30、50hPa气温具有准两年周期,100hPa上下具有显着的年周期,对流层是以3.5年甚低频周期为主;对流层顶气温无显着趋势变化和周期性变化;南极最大臭氧层高度显着变冷与近15年来臭氧层损耗有关。南半球对流层中部极涡及绕极气流减弱是南极对流层气候变暖的直接原因。  相似文献   

9.
平流层爆发性增温(SSW)超前于对流层环流异常,是延长冬季寒潮低温预报时效的重要途径之一。然而强SSW事件前后地面温度响应的区域和时间存在不确定性,其中涉及的平流层—对流层耦合过程和机理也不十分清楚。本文采用1979~2021年ERA5再分析数据集,研究了2020/2021年冬季“偏心型”强SSW事件前后中高纬度地区地面温度异常的演变特征,并分析了其与等熵大气经向质量环流平流层—对流层分支的耦合演变模态的动力联系。结果表明,伴随此次强SSW事件,亚洲和北美中纬度地区的寒潮低温事件分别在绕极西风反转为东风之前和再次恢复为西风之后发生。SSW前后大气经向质量环流的平流层向极地暖支与对流层高层向极暖支、低层向赤道冷支之间呈现出三个阶段的耦合演变模态: 同位相“加强—加强”、反位相“加强—减弱”以及反位相“减弱—加强”。加强的质量环流对流层向赤道冷支是SSW前后寒潮低温事件的主要原因,而加强的向极地平流层暖支是SSW发生及其伴随的北极涛动负位相持续加强的主要原因。大气经向质量环流不同的垂直耦合模态取决于行星波槽脊在对流层顶和对流层中低层两个关键等熵面上的西倾角异常。西倾角异常表征大气波动的斜压性,主要通过影响关键等熵面以上向极地的净质量输送和其下向赤道的净质量输送进行调控。尤其在SSW发生后的极涡恢复期,对流层顶处异常偏弱的斜压性会加强对流层向极地暖支,进而加强向赤道冷支,有利于寒潮低温的发生。本次SSW事件前后大气经向质量环流三支的耦合演变模态,与历年平流层北半球环状模(NAM)负事件中极区平流层温度异常信号下传滞后的平流层—对流层耦合演变类型相一致,其在波动尺度方面也存在共同特征,即SSW事件或NAM负事件前期对流层一波加强且上传,后期对流层二波加强但较难上传。  相似文献   

10.
平流层爆发性增温及其影响研究进展   总被引:4,自引:3,他引:1  
杨光  李崇银  李琳 《气象科学》2012,32(6):694-708
平流层爆发性增温(stratospheric sudden warming,SSW)是冬季平流层大气环流结构的一种突变现象,在短时间内平流层中高纬度的温度、风和极涡都会发生剧烈变化。因此,SSW也就成为平流层大气环流及其变化研究的重要方面之一。在强SSW期间,高纬地区温度急剧升高,西风被东风取代,极涡几乎全部崩溃。SSW极大地影响着北半球对流层大气,甚至整个中高层大气,包括对平流层乃至中层大气微量气体分布的重要影响。随着临近空间飞行平台的研究应用,以及由此而提出的临近空间环境条件的保障问题,作为临近空间重要组成部分的平流层环流变化将更加引起人们的关注。本文就SSW的特征、发生机制、对上下层相互作用的重要影响,以及SSW与准两年振荡、ENSO等的密切关系和SSW的数值模拟等方面的研究工作,进行了回顾和总结。  相似文献   

11.
闵凡花  王盘兴 《气象科学》2004,24(3):373-378
简要总结了近年来北半球春季平流层环流季节转换研究的若干进展。涉及平流层环流季节转换的特征、某些影响因素、与对流层环流的关系及平流层环流季节转换的应用。由于平流层季节转换早于对流层,其深入研究可为短期气候预测提供线索。  相似文献   

12.
本文综述了近年来关于平流层大气动力学及其与对流层大气相互作用动力过程的研究进展,特别是回顾了近年来关于平流层大气环流和行星波动力学、热带平流层大气波动及其与基本气流相互作用、平流层大气环流变异对对流层环流和气候变异的影响及其动力过程、平流层大气数值模拟以及在全球变暖背景下平流层大气的长期演变趋势预估等的研究进展。最近的研究揭示了大气准定常行星波传播波导的振荡现象、重力波在热带平流层准两年振荡和全球物质输送中的作用、平流层长期的变冷趋势变化、平流层在对流层天气和气候变化中的作用等现象,表明了平流层大气动力学研究的重要性。平流层大气动力学的深入研究,以及对数值模式中平流层模拟性能的提高,最终都会推动整个大气科学和气候变化研究的进一步发展。  相似文献   

13.
田文寿  黄金龙  郄锴  王涛  徐勉 《气象科学》2020,40(5):628-638
随着大气探测技术以及计算机性能的不断提高,近年来平流层探测数据日渐丰富,中层大气模式也得到了快速发展,平流层中一些重要的物理、化学以及动力过程得以深入研究,对平流层大气环流的认识也进一步加深。本文分析了平流层准2 a振荡(Quasi-Biennial Oscillation,QBO)、平流层残余(Brewer-Dobson,BD)环流和平流层极地环流等主要的平流层大气环流系统和信号的气候态特征、形成机制、年际变率以及长期趋势等,阐述了它们的主要影响因子和过程,讨论并展望了与平流层环流有关的一些主要科学问题。  相似文献   

14.
北半球臭氧总量与平流层环流关系的分析   总被引:2,自引:7,他引:2  
郑光  吴统文 《高原气象》1991,10(3):277-286
  相似文献   

15.
Summary The variability of the horizontal circulation in the stratosphere and troposphere of the Northern Hemisphere (NH) is compared by using various approaches. Spatial degrees of freedom (dof) on different time scales were derived. Modes of variability were computed in geopotential height fields at the tropospheric and stratospheric pressure levels by applying multivariate statistical approaches. Features of the spatial and temporal variability of the winterly zonal wind were studied with the help of recurrence and persistence analyses. The geopotential height and zonally-averaged zonal wind at the 50-, 500- and 1000-hPa level are used to investigate the behavior of the horizontal circulation in the lower stratosphere, mid-troposphere and at the near surface level, respectively. It is illustrated that the features of the variability of the horizontal circulation are very similar in the mid-troposphere and at the near surface level. Due to the filtering of tropospheric disturbances by the stratospheric and upper tropospheric zonal mean flow, the variability of the stratospheric circulation exhibits less spatial complexity than the circulation at tropospheric pressure levels. There exist enormous differences in the number of degrees of freedom (or free variability modes) between both atmospheric layers. Results of the analyses clearly show that the concept of a zonally symmetric AO with a simple structure in the troposphere similar to the one in the stratosphere is not valid. It is concluded that the spatially filtered climate change signal can be detected earlier in the stratosphere than in the mid-troposphere or at the near surface level. Received June 28, 2000/Revised March 10, 2001  相似文献   

16.
Accurate seasonal forecasts rely on the presence of low frequency, predictable signals in the climate system which have a sufficiently well understood and significant impact on the atmospheric circulation. In the Northern European region, signals associated with seasonal scale variability such as ENSO, North Atlantic SST anomalies and the North Atlantic Oscillation have not yet proven sufficient to enable satisfactorily skilful dynamical seasonal forecasts. The winter-time circulations of the stratosphere and troposphere are highly coupled. It is therefore possible that additional seasonal forecasting skill may be gained by including a realistic stratosphere in models. In this study we assess the ability of five seasonal forecasting models to simulate the Northern Hemisphere extra-tropical winter-time stratospheric circulation. Our results show that all of the models have a polar night jet which is too weak and displaced southward compared to re-analysis data. It is shown that the models underestimate the number, magnitude and duration of periods of anomalous stratospheric circulation. Despite the poor representation of the general circulation of the stratosphere, the results indicate that there may be a detectable tropospheric response following anomalous circulation events in the stratosphere. However, the models fail to exhibit any predictability in their forecasts. These results highlight some of the deficiencies of current seasonal forecasting models with a poorly resolved stratosphere. The combination of these results with other recent studies which show a tropospheric response to stratospheric variability, demonstrates a real prospect for improving the skill of seasonal forecasts.  相似文献   

17.
The climate and natural variability of the large-scale stratospheric circulation simulated by a newly developed general circulation model are evaluated against available global observations. The simulation consisted of a 30-year annual cycle integration performed with a comprehensive model of the troposphere and stratosphere. The observations consisted of a 15-year dataset from global operational analyses of the troposphere and stratosphere. The model evaluation concentrates on the simulation of the evolution of the extratropical stratospheric circulation in both hemispheres. The December–February climatology of the observed zonal mean winter circulation is found to be reasonably well captured by the model, although in the Northern Hemisphere upper stratosphere the simulated westerly winds are systematically stronger and a cold bias is apparent in the polar stratosphere. This Northern Hemisphere stratospheric cold bias virtually disappears during spring (March–May), consistent with a realistic simulation of the spring weakening of the mean westerly winds in the model. A considerable amount of monthly interannual variability is also found in the simulation in the Northern Hemisphere in late winter and early spring. The simulated interannual variability is predominantly caused by polar warmings of the stratosphere, in agreement with observations. The breakdown of the Northern Hemisphere stratospheric polar vortex appears therefore to occur in a realistic way in the model. However, in early winter the model severely underestimates the interannual variability, especially in the upper troposphere. The Southern Hemisphere winter (June–August) zonal mean temperature is systematically colder in the model, and the simulated winds are somewhat too strong in the upper stratosphere. Contrary to the results for the Northern Hemisphere spring, this model cold bias worsens during the Southern Hemisphere spring (September–November). Significant discrepancies between the model results and the observations are therefore found during the breakdown of the Southern Hemisphere polar vortex. For instance, the simulated Southern Hemisphere stratosphere westerly jet continuously decreases in intensity more or less in situ from June to November, while the observed stratospheric jet moves downward and poleward.This paper was presented at the Third International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 4–8 Sept. 1995 under the auspice of the Max Planck Institute for Meteorology, Hamburg. Editor for these papers is L. Dümenil.  相似文献   

18.
The Northern Hemisphere stratospheric polar vortex is linked to surface weather. After Stratospheric Sudden Warmings in winter, the tropospheric circulation is often nudged towards the negative phase of the Northern Annular Mode (NAM) and the North Atlantic Oscillation (NAO). A strong stratospheric vortex is often associated with subsequent positive NAM/NAO conditions. For stratosphere?Ctroposphere associations to be useful for forecasting purposes it is crucial that changes to the stratospheric vortex can be understood and predicted. Recent studies have proposed that there exist tropospheric precursors to anomalous vortex events in the stratosphere and that these precursors may be understood by considering the relationship between stationary wave patterns and regional variability. Another important factor is the extent to which the inherent variability of the stratosphere in an atmospheric model influences its ability to simulate stratosphere?Ctroposphere links. Here we examine the lower stratosphere variability in 300-year pre-industrial control integrations from 13 coupled climate models. We show that robust precursors to stratospheric polar vortex anomalies are evident across the multi-model ensemble. The most significant tropospheric component of these precursors consists of a height anomaly dipole across northern Eurasia and large anomalies in upward stationary wave fluxes in the lower stratosphere over the continent. The strength of the stratospheric variability in the models was found to depend on the variability of the upward stationary wave fluxes and the amplitude of the stationary waves.  相似文献   

19.
There is evidence that the observed changes in winter North Atlantic Oscillation (NAO) drive a significant portion of Atlantic Multi Decadal Variability (AMV). However, whether the observed decadal NAO changes can be forced by the ocean is controversial. There is also evidence that artificially imposed multi-decadal stratospheric changes can impact the troposphere in winter. But the origins of such stratospheric changes are still unclear, especially in early to mid winter, where the radiative ozone-impact is negligible. Here we show, through observational analysis and atmospheric model experiments, that large-scale Atlantic warming associated with AMV drives high-latitude precursory stratospheric warming in early to mid winter that propagates downward resulting in a negative tropospheric NAO in late winter. The mechanism involves stratosphere/troposphere dynamical coupling, and can be simulated to a large extent, but only with a stratosphere resolving model (i.e., high-top). Further analysis shows that this precursory stratospheric response can be explained by the shift of the daily extremes toward more major stratospheric warming events. This shift cannot be simulated with the atmospheric (low-top) model configuration that poorly resolves the stratosphere and implements a sponge layer in upper model levels. While the potential role of the stratosphere in multi-decadal NAO and Atlantic meridional overturning circulation changes has been recognised, our results show that the stratosphere is an essential element of extra-tropical atmospheric response to ocean variability. Our findings suggest that the use of stratosphere resolving models should improve the simulation, prediction, and projection of extra-tropical climate, and lead to a better understanding of natural and anthropogenic climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号