首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since 231 B. C.,a total of 15 M6.0 - 7.5 earthquakes have been recorded in the west Beijing basin-range tectonic region( 38.3°- 41.5° E,112°- 116.2° N),a region mainly under the action of tensional normal faulting. In this paper,we calculate the Coulomb stress change of each earthquake and the cumulative Coulomb stress change,and on this basis we analyze the stress triggering of strong earthquakes. The research shows that there are 10 of 14 earthquakes that occurred in the trigger zones,in which the Coulomb stress change is positive,and the trigger rate is 71%. The positive areas of cumulative Coulomb stress change caused by these 15 earthquakes are: middle of northern Liulengshan fault,Northern Huaizhuo basin fault,Xinbaoan-Shacheng fault,Sangganhe fault and Southern Yuxian basin fault. This necessarily increases the seismic risk of these faults and can be used as a reference for future seismic risk analysis in this area.  相似文献   

2.
Static Coulomb stress change induced by earthquake slip is frequently used to explain earthquake activities and aftershock distribution.However,some parameters for the Coulomb stress calculation are unable to be well constrained from laboratory experiments and field observations.Different parameters may directly affect the pattern of static Coulomb stress.The static Coulomb stress changes induced by the Wenchuan earthquake calculated by six research groups are not consistent with each other.To investigate how the parameters affect the calculation results,we change the parameters in turn through modeling and compare the results of different calculation parameters.We find that gravity,position and strike of receiver faults have little influence on coseismic Coulomb stress calculations,but other parameters can change the value and sign of the results in various degrees especially around the earthquake rupture plane.Therefore the uncertainty analysis of static Coulomb stress change induced by earthquake should be taken into consideration in the earthquake hazard analysis.  相似文献   

3.
Using the focal mechanism solutions and slip distribution model data of the Taiwan Straits MS7.3 earthquake on September 16, 1994, we calculate the static Coulomb stress changes stemming from the earthquake. Based on the distribution of aftershocks and stress field, as well as the location of historical earthquakes, we analyze the Coulomb stress change triggered by the Taiwan Straits MS7.3 earthquake. The result shows that the static Coulomb stress change obtained by forward modeling based on the slip distribution model is quite consistent with the location of aftershocks in the areas far away from the epicenter. Ninety percent of aftershocks occurred in the stress increased areas. The Coulomb stress change is not entirely consistent with the distribution of aftershocks near the epicenter. It is found that Coulomb stress change can better reflect the aftershock distribution far away from the epicenter, while such corresponding relationship becomes quite complex near the epicenter. Through the calculation of the Coulomb stress change, we find that the stress increases in the southwest part of the Min-Yue (Fujian-Guangdong) coastal fault zone, which enhances the seismic activity. Therefore, it is deemed that the sea area between Nanpeng Island and Dongshan Island, where the Min-Yue coastal fault zone intersects with the NW-trending Shanghang-Dongshan fault, has a high seismic risk.  相似文献   

4.
We calculated the Coulomb failure stress change generated by the 1976 Tangshan earthquake that is projected onto the fault planes and slip directions of large subsequent aftershocks.Results of previous studies on the seismic fail-ure distribution,crustal velocity and viscosity structures of the Tangshan earthquake are used as model constraints.Effects of the local pore fluid pressure and impact of soft medium near the fault are also considered.Our result shows that the subsequent Luanxian and Ninghe earthquakes occurred in the regions with a positive Coulomb fail-ure stress produced by the Tangshan earthquake.To study the triggering effect of the Tangshan,Luanxian,and Ninghe earthquakes on the follow-up small earthquakes,we first evaluate the possible focal mechanisms of small earthquakes according to the regional stress field and co-seismic slip distributions derived from previous studies,assuming the amplitude of regional tectonic stress as 10 MPa.By projecting the stress changes generated by the above three earthquakes onto the possible fault planes and slip directions of small earthquakes,we find that the "butterfly" distribution pattern of increased Coulomb failure stress is consistent with the spatial distribution of follow-up earthquakes,and 95% of the aftershocks occurred in regions where Coulomb failure stresses increase,indicating that the former large earthquakes modulated occurrences of follow-up earthquakes in the Tangshan earthquake sequence.This result has some significance in rapid assessment of aftershock hazard after a large earthquake.If detailed failure distribution,seismogenic fault in the focal area and their slip features can be rapidly determined after a large earthquake,our algorithm can be used to predict the locations of large aftershocks.  相似文献   

5.
This paper calculates the static Coulomb stress changes generated by four earthquakes in the Yutian area during 2008 ~ 2014 separately, then discusses the triggering influence, their accumulated Coulomb stress changes and their influence on nearby faults. The results indicate that the Ms5. 5 earthquake in 2011 and the Ms7. 3 earthquake in 2014 are both in the regions where the Coulomb stress change is positive, the stress changes are 0. 004MPa and 0. 021MPa, respectively, meaning they are triggered by prior earthquakes. The Ms6. 2 earthquake in 2012 occurred in the place where Coulomb stress change was negative, so it is postponed by the prior earthquakes. The image of Coulomb stress changes of the Ms 7. 3 earthquake in 2014 is in accord with aftershocks (ML ≥ 3. 0 ) distribution, but some regions on the fault where the Coulomb stress change is positive have few aftershocks, and strong aftershocks may occur at these districts in future. In addition, this paper calculates the Coulomb stress change on nearby faults, and finds that the Coulomb stress changes of different elements in the GGC fault are very different, and must receive strong triggered-influence, though the result may be influenced by the input finite fault model, so there is still a large earthquake-risk. The GGN, PLC, PLW and LBW faults were also triggered by the four earthquakes occurring between 2008 ~ 2014. Their maximum Coulomb stress changes all exceed 0. 002MPa, so they also have a strong earthquake hazard.  相似文献   

6.
This paper calculates the static stress changes generated by the Yushu M_S 7. 1 earthquake in Qinghai Province. On the basis of regional stress,we take account of the static stress change triggered by the Yushu M_S 7. 1 earthquake to find the optimally oriented fault planes,then calculate the Coulomb stress change on the optimally oriented fault plane. The results indicate that most of the aftershocks are triggered by the mainshock. The image of Coulomb stress changes is also in accord with regional earthquakes ( M_L ≥3. 0 ) distribution,but the value is lower than 0. 01MPa. In addition,this paper calculates the Coulomb stress changes in the case that the aftershock fault plane is the same as the main shock. Through comparison,we find that the image of Coulomb stress changes obtained using the "optimally oriented fault"approach is more consistent with the distribution of Yushu aftershocks and regional earthquakes.  相似文献   

7.
According to the representation theorem of seismic energy radiation,we know that,at any point on the fault,the instantaneous seismic radiation energy,ES,the seismic moment M0,and the apparent stress σa=μES /M0(μ is the shear modulus on the fault plane) should be positive values at any time during an earthquake faulting.However,we have noticed that,in recent source parameter inversion scheme for deriving the critical slip-weakening distance,the apparent stress used as a constraint condition on the fault plan...  相似文献   

8.
Based on the lateral segmentation and vertical stratification characteristics of the crustal medium in Sichuan-Yunnan region,and the asymmetry of the static dislocations on the coseismic fault plane of the Wenchuan M_S8. 0 earthquake,we built a three-dimensional viscoelastic finite element model of the crust in the Sichuan-Yunnan region. The postseismic impact of the Wenchuan M_S8. 0 earthquake on the Sichuan-Yunnan region was studied.The results show that:① The far-field horizontal deformation caused by the viscoelastic relaxation of the medium in the 10 years after the earthquake is about 0-20 mm within the Sichuan-Yunnan diamond-shaped block,which has a greater influence on north side and smaller on south side.② In the 10 years after the earthquake,the far-field vertical deformation caused by the viscoelastic relaxation effect of the medium is small,and it shows an increase of about 0-4 mm in most areas of the Sichuan-Yunnan diamond-shaped block.③ The Xianshuihe fault and the eastern segment of the East Kunlun fault,which are close to the seismogenic fault,show a high gradient on deformation fields after the earthquake.④ In order to compare with the strong earthquake activity in the SichuanYunnan region after the Wenchuan earthquake, the horizontal stress state and the Coulomb failure stress change of the active block boundary are also calculated. From the spatial distribution of the coseismic and postseismic displacement field,the fault activity characteristics reflected by the stress state and the stress loading of the fault layer reflected by the Coulomb failure stress change,there is a certain correlation with the spatial distribution of strong earthquake activity in this region.  相似文献   

9.
Severe faults have caused many earthquakes around the world throughout history.More recently,earthquakes have occurred in Taiwan,China(Chi-Chi fault),and elsewhere,causing loss of lives and destroying many buildings and structures.These tectonic movements have gained attention from engineers,and in the past 15 years,the focus has been on faulting mechanisms.In this study,a physical model(1 g)was fabricated and used to evaluate the impact of a reverse fault in a field with a tunnel.In the 1 g model,researchers installed additional gauges on the tunnel,so that all the displacements could be adjusted,and all the responses could be monitored during faulting.An experimental study of various soil properties(cohesion and friction angles)in reverse faults on the tunnel lining were carried out and are described herein.A comparison of results for different levels of soil cohesion revealed that it can dramatically reduce the displacement by as much as 40%,and that friction angles of 27ocan record approximately 60%more displacements than at 37o.Furthermore,a comparison of fault angles of 30oand 60oindicates that the displacements can be different by more than 43%in cohesionless soil and about 64%for a friction angle of 27o.  相似文献   

10.
After the 2008 M_W7.9 Wenchuan earthquake, the eastern Tibetan Plateau experienced a series of M_W6.0 earthquakes, including the 2013 M_W6.6 Lushan, 2014 M_W6.1 Kangding and 2017 M_W6.5 Jiuzhaigou events. Based on available constraints, we build a three-dimensional viscoelastic finite element model to calculate Coulomb failure stress caused by these strong earthquakes. In this model, the geometry and slip vector of the initial rupture zone of each earthquake are used to better evaluate the earthquake-related stress projection. Considering reasonable ranges of viscosities for the crust and upper mantle in different tectonic units, numerical results show that after the Wenchuan earthquake, the coseismic Coulomb failure stress change at the hypocenters of the subsequent earthquakes increased to approximately +0.012–+0.040, +0.01–+0.03, and+0.008–+0.015 MPa, respectively. With viscoelastic relaxation of the lower crust and upper mantle, the Coulomb failure stress change at the hypocenters of these earthquakes accumulated to about +0.014–+0.042, +0.016–+0.036, and +0.003–+0.007 MPa just before their occurrence. This suggests that the Wenchuan earthquake indeed triggered or hastened the occurrence of the Lushan, Kangding and Jiuzhaigou events, supporting that strong earthquake clustering around the eastern Tibetan Plateau could be related to stress interaction between the seismogenic faults. Besides, ~94% and ~6% of the stress increase around(and before the occurrence of) the Kangding earthquake were contributed by the Wenchuan event and the Lushan event, respectively; the positive Coulomb failure stress change at the Jiuzhaigou earthquake hypocenter was related to coseismic slip partitioning of the Wenchuan earthquake. This means that stress interaction among the earthquakes could be controlled by the combined effect of stress of the previous events and by the complexity of earthquake ruptures. Thus, in researches on the earthquake-triggering mechanism, special attentions should be paid on both details of the rupture model and multiple factors of previous earthquakes.  相似文献   

11.
The paper discusses quantitatively the influence of the Yutian MS7.4 earthquake of March 21,2008 and Wuqia MS6.9 earthquake of October 5,2008 on regional seismicity in Xinjiang,and explains primarily the possible reason of earthquake activity feature in Xinjiang after the Yutian MS7.4 earthquake by analyzing the static Coulomb failure stress change produced by the Yutian MS7.4 earthquake and Wuqia MS6.9 earthquake,and the seismicity feature of MS≥3 earthquakes in the positive Coulomb stress change region of...  相似文献   

12.
A remarkable earthquake struck Yutian, China on June 26~(th), 2020. Here, we use Sentinel-1 images to investigate the deformation induced by this event. We invert the In SAR observations using a two-step approach: a nonlinear inversion to constrain fault geometries with uniform slip based on the rectangular plane dislocation in an elastic half-space, followed by a linear inversion to retrieve the slip distribution on the fault plane. The results show that the maximum LOS displacement is 22.6 cm, and the fault accessed to the ruptured characteristics of normal faults with the minor left-lateral strike-slip component. The fault model indicates a 210° strike. The main rupture zone concentrates in the depth of 5–15 km, and the fault slip peaks at 0.89 m at the depth of 9 km. Then, we calculate the variation of the static Coulomb stress based on the optimal fault model, the results suggest that the Coulomb stress of the Altyn Tagh fault and other neighboring faults has increased and more attention should be paid to possible seismic risks.  相似文献   

13.
Based on Coulomb static stress variation, the stress trigging action of the Mani ( Ms7.9, Nov.1997) earthquake on the West Kuulun Mountains Pass (MsS.1, Nov. 2001 ) earthquake is researched. Results of different source mechanism resolutions show that a 10_3 MPa Coulomb stress due to the Mani earthquake was added to the fracture fault of the Kunlun earthquake, and this may shift the broken date to about 10 years earlier, and infer that the stress level in the crust is not low. Comparing the relationship between strong earthquake strength and frequency and earth rotation change, it is shown that the strength‘s decrease and the variation period‘ s shortening of earth rotation are important controlling factors on strong earthquake activity. This great event with Ms = 8.1 took place probably due to a gradual strengthening background of regional stress field within the Qinghai-Xizang block in the period of acceleration of change of day‘s length and stress triggering from the Mani earthquake.  相似文献   

14.
The coseismic Coulomb stress change caused by fault interaction and its influences on the triggering and delaying of earthquake are briefly discussed.The Xianshuihe fault belt consists of Luhuo,Daofu,Kangding,Qianning and Ganzi fault.Luohuo(Ms=7.6,1973)-Kangding(Ms=6.2,1975)-Daofu(Ms=6.9,1981)-Ms=6.0,1982)earthquake is a seismic sequence continuous on the time axis with magnitude greater than6.0.They occurred on the Luhuo.Kangding,Daofu and Ganzi fault,respectively.The coseismic Coulomb stress changes caused by each earthquake on its surrounding major faults and microcracks are calculated,and their effects on the triggering and delaying of the next earthquake and aftershocks are analyzed.It is shown that each earthquake of the sequence occurred on the fault segment with coseismic Coulomb stress increases caused by its predecessors,and most after-shocks are distributed along the microcracks with relatively larger coseismic Coulomb stress increases resulted from the main shock.With the fault interaction considered,the seismic potential of each segment along Xianshuihe fault belt is reassessed,and contrasted with those predicted results ignoring coseismic Coulomb stress change,the significance of fault interaction and its effect on triggering and delaying of earthquake are emphasized.It is con-cluded that fault interaction plays a very important role on seismic potential of Xianshuihe fault belt,and the maximal change of future earthquake probability on fault segment is up to 30.5%.  相似文献   

15.
A composite source model has been used to simulate a broadband strong ground motion with an associated fault rupture process. A scenario earthquake fault model has been used to generate 1 000 earthquake events with a magni-tude of Mw8.0. The simulated results show that, for the characteristic event with a strike-slip faulting, the character istics of near fault ground motion is strongly dependent on the rupture directivity. If the distance between the sites and fault was given, the ground motion in the forward direction (Site A) is much larger than that in the backward direction (Site C) and that close to the fault (Site B). The SH waves radiated from the fault, which corresponds to the fault-normal component plays a key role in the ground motion amplification. Corresponding to the sites A, B, and C, the statistical analysis shows that the ratio of their aPG is 2.15:1.5:1 and their standard deviations are about 0.12, 0.11, and 0.13, respectively. If these results are applied in the current probabilistic seismic hazard analysis (PSHA), then, for the lower annual frequency of exceedance of peak ground acceleration, the predicted aPG from the hazard curve could reduce by 30% or more compared with the current PSHA model used in the developing of seismic hazard map in the USA. Therefore, with a consideration of near fault ground motion caused by the rupture directivity, the regression model used in the development of the regional attenuation relation should be modified accordingly.  相似文献   

16.
With co-seismic surface rupture slip displacements provided by the field observation for the 2001 MS8.1 West Kunlun Mountain Pass earthquake, this paper estimates the rupture speed on the main faulting segment with a long straight fault trace on the surface based on a simple slip-weakening rupture model, in which the frictional overshoot or undershoot are involved in consideration of energy partition during the earthquake faulting. In contrast to the study of Bouchon and Vallée, in which the rupture propagation along the main fault could exceed the local shear-wave speed, perhaps reach the P-wave speed on a certain section of fault, our results show that, under a slip-weakening assumption combined with a frictional undershoot (partial stress drop model), average rupture speed should be equal to or less than the Rayleigh wave speed with a high seismic radiation efficiency, which is consistent with the result derived by waveform inversion and the result estimated from source stress field. Associated with the surface rupture mechanism, such as partial stress drop (frictional undershoot) associated with the apparent stress, an alternative rupture mechanism based on the slip-weakening model has also been discussed.  相似文献   

17.
During a 4-month period starting from 21 January, 1997, an earthquake swarm of seven major events (Ms≥6.0) struck the Jiashi region at the northwestern corner of the Tarim Basin in Xinjiang,, China. Previous relocation studies suggested that these strong earthquakes had occurred along at least two parallel rupture zones. According to the relocated hypocenters and focal mechanisms of the events, we have constructed fault models for these seven earthquakes to calculate the Coulomb stress changes produced by each of these events. Furthermore, we extended our model calculations to include an ad- jacent 1996 Ms=6.9 Artushi earthquake, which occurred one year before the Jiashi earthquake swarm. Our calculations show that the Coulomb stress change caused by the preceding events was around 0.05 MPa at the hypocenter of the 4th event, and higher than 0.08 MPa at the hypocenters of the 2nd, 3rd, 5th and 6th events. Our results reveal a Coulomb stress interactive cycle of earthquake triggering between two adjacent normal and strike-slip faults.  相似文献   

18.
We simulate accumulative Coulomb failure stress change in a layered Maxwell viscoelastic media in the north-eastern Qinghai-Xizang(Tibetan)Plateau since 1920.Lithospheric stress/strain evolution is assumed to be drivenby dislocations of large earthquakes(M≥7.0)and secular tectonic loading.The earthquake rupture parameters suchas the fault rupture length,width,and slip are either adopted from field investigations or estimated from their sta-tistic relationships with the earthquake magnitudes and seismic moments.Our study shows that among 20 largeearthquakes(M≥7.0)investigated,17 occurred in areas where the Coulomb failure stress change is positive,with atriggering rate of 85%.This study provides essential data for the intermediate to long-term likelihood estimation oflarge earthquakes in the northeastern Tibetan Plateau.  相似文献   

19.
INTRODUCTIONThe effect of the Coulomb failure stress change (CFSC) caused by large earthquakes on thelocation and time of subsequent earthquake occurrence have attracted much attention in theseismological community during recent years ( Harris , 1998 ; Stein, 1999) . Many studies ofearthquake cases showedthat the increase in Coulombfailure stress (CFS) could obviously encouragethe occurrence of subsequent moderate-strong earthquakes (Deng and Sykes ,1997 ; Stein,et al .,1997 ;Nalbant…  相似文献   

20.
The November 14, 2001 Ms8.1 Kunlun Mountains earthquake in northern Tibet is the largest earthquake occurring on the Chinese mainland since 1950. We apply a three-dimensional (3-D) finite element numerical procedure to model the coseismic displacement and stress fields of the earthquake based on field investigations. We then further investigate the stress interaction between the Ms8.1 earthquake and the intensive aftershocks. Our primary calculation shows that the coseismic displacement field is centralized around the east Kunlun fault zone. And the attenuation of coseismic displacements on the south side of Kunlun fault zone is larger than that on the north side. The calculated coseismic stress field also indicates that the calculated maximal shear stress field is centralized around the east Kunlun fault zone; the directions of the coseismic major principal stress are opposite to that of the background crustal stress field of the Qinghai-Xizang (Tibet) Plateau. It indicates that the earthquake relaxes the crustal stress state in the Qinghai-Xizang (Tibet) Plateau. Finally, we study the stress interaction between Ms8.1 earthquake and its intensive aftershocks. The calculated Coulomb stress changes of the Ms8.1 great earthquake are in favor of triggering 4 aftershocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号