首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 210 毫秒
1.
After the 2008 M_W7.9 Wenchuan earthquake, the eastern Tibetan Plateau experienced a series of M_W6.0 earthquakes, including the 2013 M_W6.6 Lushan, 2014 M_W6.1 Kangding and 2017 M_W6.5 Jiuzhaigou events. Based on available constraints, we build a three-dimensional viscoelastic finite element model to calculate Coulomb failure stress caused by these strong earthquakes. In this model, the geometry and slip vector of the initial rupture zone of each earthquake are used to better evaluate the earthquake-related stress projection. Considering reasonable ranges of viscosities for the crust and upper mantle in different tectonic units, numerical results show that after the Wenchuan earthquake, the coseismic Coulomb failure stress change at the hypocenters of the subsequent earthquakes increased to approximately +0.012–+0.040, +0.01–+0.03, and+0.008–+0.015 MPa, respectively. With viscoelastic relaxation of the lower crust and upper mantle, the Coulomb failure stress change at the hypocenters of these earthquakes accumulated to about +0.014–+0.042, +0.016–+0.036, and +0.003–+0.007 MPa just before their occurrence. This suggests that the Wenchuan earthquake indeed triggered or hastened the occurrence of the Lushan, Kangding and Jiuzhaigou events, supporting that strong earthquake clustering around the eastern Tibetan Plateau could be related to stress interaction between the seismogenic faults. Besides, ~94% and ~6% of the stress increase around(and before the occurrence of) the Kangding earthquake were contributed by the Wenchuan event and the Lushan event, respectively; the positive Coulomb failure stress change at the Jiuzhaigou earthquake hypocenter was related to coseismic slip partitioning of the Wenchuan earthquake. This means that stress interaction among the earthquakes could be controlled by the combined effect of stress of the previous events and by the complexity of earthquake ruptures. Thus, in researches on the earthquake-triggering mechanism, special attentions should be paid on both details of the rupture model and multiple factors of previous earthquakes.  相似文献   

2.
We calculated the Coulomb failure stress change generated by the 1976 Tangshan earthquake that is projected onto the fault planes and slip directions of large subsequent aftershocks.Results of previous studies on the seismic fail-ure distribution,crustal velocity and viscosity structures of the Tangshan earthquake are used as model constraints.Effects of the local pore fluid pressure and impact of soft medium near the fault are also considered.Our result shows that the subsequent Luanxian and Ninghe earthquakes occurred in the regions with a positive Coulomb fail-ure stress produced by the Tangshan earthquake.To study the triggering effect of the Tangshan,Luanxian,and Ninghe earthquakes on the follow-up small earthquakes,we first evaluate the possible focal mechanisms of small earthquakes according to the regional stress field and co-seismic slip distributions derived from previous studies,assuming the amplitude of regional tectonic stress as 10 MPa.By projecting the stress changes generated by the above three earthquakes onto the possible fault planes and slip directions of small earthquakes,we find that the "butterfly" distribution pattern of increased Coulomb failure stress is consistent with the spatial distribution of follow-up earthquakes,and 95% of the aftershocks occurred in regions where Coulomb failure stresses increase,indicating that the former large earthquakes modulated occurrences of follow-up earthquakes in the Tangshan earthquake sequence.This result has some significance in rapid assessment of aftershock hazard after a large earthquake.If detailed failure distribution,seismogenic fault in the focal area and their slip features can be rapidly determined after a large earthquake,our algorithm can be used to predict the locations of large aftershocks.  相似文献   

3.
In this paper, we focused on earthquakes with Ms ≥ 7.0 in the Chinese mainland from 1900 to 2012, calculated the lunisolar tidal Coulomb failure stress on the seismic fault plane and got the tidal phase through Schuster's test, then quantitatively analyzed the correlation between strong earthquakes in the Chinese mainland and tidal Coulomb failure stress. Research shows that among 57 strong earthquakes with focal mechanism solutions, over 71.9% took place within the tidal loading phase, with the p-value of 3.83%, indicating that strong earthquakes with Ms ≥ 7. 0 in Chinese mainland have a certain correlation with lunisolar tidal Coulomb failure stress. In the active period, the p-value is 4. 56%, 75.5% of earthquakes occurred in the tidal loading phase zone, and 50% of earthquakes occurred in the quiescence period, indicating that strong earthquakes in the active period were obviously triggered with the tidal Coulomb failure stress loading.  相似文献   

4.
Earthquakes are caused by the failure of faults,driven by tectonic stress build-up in the Earth’s crust.To study the earthquake preparation process and assess regional earthquake potentials,it is vitally important to understand the crustal stress evolution process and identify its change in pattern associated with the seismogenic process.In this study we investigate the focal mechanism orientations of earthquakes in southern California from 1982 to 1999,basing on a focal mechanism catalog from Hauksson.We f...  相似文献   

5.
Research on seismic stress triggering   总被引:6,自引:0,他引:6  
Introduction What is called seismic stress triggering refers to that stress change tensor produced by previous earthquake projected on the fault plane and slip direction of subsequent earthquakes, taking into account normal stress, pore pressure and friction coefficient, and Coulomb failure stress change DCFS can be obtained. If the direction of Coulomb failure stress changes are consistent with slip direction of subsequent seismic mechanism, e.g., Coulomb failure stress changes are positive…  相似文献   

6.
Focal depths of the 2008 M_s6.1 Panzhihua earthquake sequence and tectonic stress field in the source area are investigated.Source depths of 24 earthquakes in Panzhihua earthquake sequence with a magnitude M≥3.0 were determined using the seismic depth phase sPL;additionally,the focal depths of 232 earthquakes were measured by fitting the threecomponent waveforms of the P and S waves.The source depth of the main shock is~12 km.The majority of the aftershocks with magnitude M≥3.0 occurred in the brittle upper crust at the depths range of 12-18 km.Further,the Source mechanisms of the 232events around the Panzhihua earthquake source area were determined,and the results show that the earthquakes have predominantly strike-slip mechanisms in the Dianzhong Block,but display complexity of the focal mechanisms outside and near the boundary of the Dianzhong block.The 232 earthquake mechanisms from this study are combined with the solutions from the Global Centroid Moment Tensor (GCMT) catalog to derive 2D stress field.The inversion results show that the Dianzhong block is predominantly under a strike slip faulting regime and the direction of the maximum principal compressionσ1 is northwestsoutheast (NW-SE)-trending.The distribution is coincide with GPS velocity field.However,orientations of principal stress axes as well as the faulting types change outside and near the Dianzhong block.The results show that the tectonic stress field in the study area is predominantly controlled by the southeast (SE)-trending horizontal movement and clockwise rotation of the Dianzhong block as a result of the eastward movement of eastern Tibetan meeting the old and rigid South China block (SCB).The Panzhihua earthquake ruptured at~12 km depth where the tectonic stress regime is under the SE-direction horizontal compression and the NE-direction horizontal extension.  相似文献   

7.
Static Coulomb stress change induced by earthquake slip is frequently used to explain earthquake activities and aftershock distribution.However,some parameters for the Coulomb stress calculation are unable to be well constrained from laboratory experiments and field observations.Different parameters may directly affect the pattern of static Coulomb stress.The static Coulomb stress changes induced by the Wenchuan earthquake calculated by six research groups are not consistent with each other.To investigate how the parameters affect the calculation results,we change the parameters in turn through modeling and compare the results of different calculation parameters.We find that gravity,position and strike of receiver faults have little influence on coseismic Coulomb stress calculations,but other parameters can change the value and sign of the results in various degrees especially around the earthquake rupture plane.Therefore the uncertainty analysis of static Coulomb stress change induced by earthquake should be taken into consideration in the earthquake hazard analysis.  相似文献   

8.
Crustal stress field holds an important position in geodynamics research, such as in plate motion simulations, uplift of the Qinghai-Xizang (Tibet) Plateau and earthquake preparation and occurrence. However, most of the crustal stress studies emphasize particularly on the determination of stress direction, with little study being done on stress magnitude at present. After reviewing ideas on a stress magnitude study from geological, geophysical and various other aspects, a method to estimate the stress magnitude in the source region according to the deflection of stress direction before and after large earthquakes and the stress drop tensor of earthquake rupture has been developed. The proposed method can also be supplemented by the average apparent stress before and after large earthquakes. The stress direction deflection before and after large earthquakes can be inverted by massive focal mechanisms of foreshocks and aftershocks and the stress drop field generated by the seismic source can be calculated by the detailed distribution of the earthquakes rupture. The mathematical relationship can then be constructed between the stress drop field, where its magnitude and direction are known and the stress tensor before and after large earthquakes, where its direction is known but magnitude is unknown, thereby obtaining the stress magnitude. The average apparent stress before and after large earthquakes can be obtained by using the catalog of broadband radiated energy and seismic moment tensor of foreshocks and aftershocks and the different responses to stress drops. This relationship leads to another estimation of stress magnitude before a large earthquake. The stress magnitude and its error are constrained by combining the two methods, which provide new constraints for the geodynamics study.  相似文献   

9.
Coulomb stress changes associated with the strong earthquakes that occurred since 1904 in Sichuan and Yunnan provinces of China are investigated. The study area comprises the most active seismic fault zones in the Chinese mainland and suffers from both strong and frequent events. The tectonic regime of this rhombic-shaped area is affected by the eastern extrusion of the Tibetan highland due to the collision of Eurasian Plate against the Indian lithospheric block along the Himalayan convergent zone. This movement is accommodated on major strike-slip intraplate fault zones that strike in an E-W direction. The gradual 90° clockwise rotation of the faults in the study area contributes to the complexity of the stress field. The seismic hazard assessment in this region is attempted by calculating the change of the Coulomb Failure Function (?CFF) arising from both the coseismic slip of strong events (MS≥6.5) and the stress built-up by continuous tectonic loading on major regional faults. At every step of the stress evolutionary model an examination of possible triggering of each next strong event is made and the model finally puts in evidence the fault segments that apt to fail in an impending strong event, thus providing fu-ture seismic hazard evaluation.  相似文献   

10.
Based on the waveform data observed by the regional seismic network of Gansu Province,we calculated the apparent stress of 422 earthquakes with M_L≥ 2. 0 occurring in the surrounding area of the Minxian earthquake from January 2010 to July 2014 and obtained the temporal and spatial variation of apparent stress before and after the Minxian earthquake. Results show that( 1) the high value of apparent stress of earthquakes with M_L≥4. 0 was concentrated in the epicenter area before the Minxian earthquake while that of earthquakes with M_L 4. 0 was not;( 2) Apparent stress around the epicenter area showed an obvious increasing process before the Minxian earthquake and the increasing process has continued after the main shock,which means that this study area is still in the danger of strong earthquakes.  相似文献   

11.
自1920年海原发生M8.5地震以来,青藏高原东北缘接连发生了1927年古浪M8.0地震、1932年昌马M7.6地震等一系列大地震,使其进入了强震活动的丛集期。为了探究青藏高原东北缘这一系列地震间的相互作用及区域地震危险性,建立青藏高原东北缘的三维Maxwell黏弹性有限元模型,模拟了区域自1920年以来17次M6.7以上地震的同震及震后库仑应力演化。结果显示:研究区自1920年海原M8.5大地震之后,后续的16次地震中,有13次地震发生在库仑应力变化为正的区域,说明了地震间的相互作用可能是导致区域地震丛集的主要原因之一。系列地震发生后,阿尔金断裂、柴达木盆地断裂西段、东昆仑断裂中段、鄂拉山断裂北段、共和盆地断裂南段、日月山断裂南段、庄浪河断裂、礼县—罗家堡断裂、成县盆地断裂西段、文县断裂西段、龙首山断裂南段、六盘山断裂东段、西秦岭北缘断裂东段、海原断裂西段和祁连断裂东段位于库仑应力变化为正的区域,且大部分断裂或断裂段的累积库仑应力变化超过了0.01 MPa,它们未来的地震危险性较高。  相似文献   

12.
IntroductionThenortheasternregionofQinghai-Xizangplateauisthejunctionregionofthethreeblocks,ie.,Qinghai-Xizang,AIxaandordosblock.TianandDing(l998)studiedtheclockwisetypequasi-trijunctionaroundHaiyuan-YinchuaninnortheasternregionofQinghai-Xizangplateau.Thethreet6ctonicbranchesofthequasi4rjunctionareQiIianshanfaultzone,Yinchuan-Jedai-Linhe(YJL)fractureddepressionbasinandLiupanshanfaultzone.TheQilianshanfaultzoneshowssin-istraIandcompressionalmovement,themovementofYJLbasinisofdextraland…  相似文献   

13.
Broadband P and S waves source spectra of 12 MS5.0 earthquakes of the 1997 Jiashi, Xinjiang, China, earthquake swarm recorded at 13 GDSN stations have been analyzed. Rupture size and static stress drop of these earthquakes have been estimated through measuring the corner frequency of the source spectra. Direction of rupture propagation of the earthquake faulting has also been inferred from the azimuthal variation of the corner frequency. The main results are as follows: ①The rupture size of MS6.0 strong earthquakes is in the range of 10~20 km, while that of MS=5.0~5.5 earthquakes is 6~10 km.② The static stress drop of the swarm earthquakes is rather low, being of the order of 0.1 MPa. This implies that the deformation release rate in the source region may be low. ③ Stress drop of the earthquakes appears to be proportional to their seismic moment, and also to be dependent on their focal mechanism. The stress drop of normal faulting earthquakes is usually lower than that of strike-slip type earthquakes. ④ For each MS6.0 earthquake there exists an apparent azimuthal variation of the corner frequencies. Azimuthally variation pattern of corner frequencies of different earthquakes shows that the source rupture pattern of the Jiashi earthquake swarm is complex and no uniform rupture expanding direction exists.  相似文献   

14.
In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrence interval and earthquake rupture patterns along the Haiyuan fault. Based on this paleoseismological information, the recurrence probability and magnitude distribution for M≥6.7 earthquakes in future 100 years along the Haiyuan fault can be obtained through weighted computation by using Poisson and Brownian passage time models and considering different rupture patterns. The result shows that the recurrence probability of M S≥6.7 earthquakes is about 0.035 in future 100 years along the Haiyuan fault. Foundation item: Joint Seismological Science Foundation of China (103034) and Major Research “Research on Assessment of Seismic Safety” from China Earthquake Administration during the tenth Five-year Plan.  相似文献   

15.
青藏高原东北隅地区位于青藏高原、鄂尔多斯和阿拉善三大块体交汇部位,发育一组以逆走滑活动为主的弧形断裂系,其新活动性强,历史及现代强震频发,是探讨现代中小地震密集区与历史强震关联性的理想地区,也是检验和发展小震密集区值方法及其适用条件的有利地区。本文采用甘肃省地震局对该区1970年以来1~5级地震仪器监测目录,利用网格点密集值方法进行计算分析,共划分出21个地震密集区。通过分析每个地震密集区内小震活动的时间分布特征及前人对历史地震和活动构造的研究结果,综合判断地震密集区与历史强震之间的对应关系,归纳总结不同震级历史强震密集区的持续时间,给出运用网格点密集值方法校核青藏高原东北隅历史地震的限定条件。研究结果表明:青藏高原东北隅弧形构造区大约66.7%的密集区对应历史强震,两者之间有较密切的关联性;且地震震级越大密集区持续时间越长,两者之间的拟合关系为:T=4.38×10~(-7)×M~(10.91)。  相似文献   

16.
During a 4-month period starting from 21 January, 1997, an earthquake swarm of seven major events (Ms≥6.0) struck the Jiashi region at the northwestern corner of the Tarim Basin in Xinjiang,, China. Previous relocation studies suggested that these strong earthquakes had occurred along at least two parallel rupture zones. According to the relocated hypocenters and focal mechanisms of the events, we have constructed fault models for these seven earthquakes to calculate the Coulomb stress changes produced by each of these events. Furthermore, we extended our model calculations to include an ad- jacent 1996 Ms=6.9 Artushi earthquake, which occurred one year before the Jiashi earthquake swarm. Our calculations show that the Coulomb stress change caused by the preceding events was around 0.05 MPa at the hypocenter of the 4th event, and higher than 0.08 MPa at the hypocenters of the 2nd, 3rd, 5th and 6th events. Our results reveal a Coulomb stress interactive cycle of earthquake triggering between two adjacent normal and strike-slip faults.  相似文献   

17.
Introduction Stress release model (SRM) was proposed by Vere-Jones (1978) for statistical study of seismicity. Physically it is a stochastic version of the elastic rebound theory of earthquake genesis. The classical elastic rebound model suggests that the stress has been slowly accumulating until the burst of an earthquake occurrence for stress release. This can be simulated by the jump Markov process in stochastic field, and SRM was developed on the basis of Knopoff (s Markov model (Knop…  相似文献   

18.
Introduction In the development of seismic science,the improvement of observational instruments is prone to produce new parameters and promote rapid growth of seismology.For example,after the global digital seismograph network is established,some studies that could not be made or easily made in the past are now being carried out successively.As a result,analytical studies based on digital data have been made one after another and digital seismology has formed.Up to now,Harvard University has …  相似文献   

19.
2021年青海玛多7.4级地震前地震活动异常特征分析   总被引:1,自引:1,他引:0       下载免费PDF全文
结合青海玛多7.4级地震前日常跟踪工作中出现的地震活动异常,系统梳理羌塘块体6级地震成组、中国大陆5级地震低频活动、青藏高原东北缘中等地震活动显著增强以及青藏高原东北缘地区震群活动的时空异常特征,总结多项指标的预测意义,并对部分重要指标做了预测效能评估。同时,通过研究碌曲震群的时空分布特征,认为碌曲地区是一个应力敏感区域,对周边地区中强地震的发生有较好的预测意义,在后续震情监视过程中应该作为重要指标来跟踪。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号