首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 671 毫秒
1.
本文发展了基于辛格式离散奇异褶积微分算子(SDSCD)的保结构方法模拟弹性波场,求解弹性波动方程时,引入辛差分格式进行时间离散,采用离散奇异褶积微分算子进行空间离散.相比于传统的伪谱方法,该方法提高了计算精度和稳定性.数值结果表明SDSCD方法可以有效地抑制数值频散,为解决大尺度、长时程地震波场模拟问题提供了合适的数值方法.  相似文献   

2.
地震波场模拟方法研究对于与波动现象有关的地震学问题的重要性是不言而喻的.就目前现有的各种正演算法来说,精度较高的算法(如有限元法、谱元法、高阶有限差分法等),其计算速度较慢;计算速度较快的算法(如低阶有限差分法、付氏伪谱法等)计算精度却比较低.为了兼顾地震波场模拟的精度与速度,本文推出了一种快速的、高精度地震波场模拟方法(基于Forsyte广义正交多项式的褶积微分算子法),该方法是以计算数学中的Forsyte广义正交多项式插值函数为基础,构建一个新的褶积微分算子,并将该算子引入到地震波动方程的一阶速度-应力方程的空间微分运算中去,采用时间交错网格有限差分算子替代普通的差分算子以匹配高精度的褶积微分算子,从而构造一种全新的地震波场数值模拟方法.该方法同时具有广义正交多项式方法的高精度和短算子低阶有限差分算法的高速度.通过对算子长度的调节及算子系数的优化,可同时兼顾波场解的全局信息与局部信息.复杂非均匀介质模型中的波场数值模拟实验证实了该方法的可行性及优越性.  相似文献   

3.
将基于计算数学中Forsyte 广义正交多项式的迭积微分算子引入到地震波动方程的一阶速度--应力方程的空间微分运算中去,并采用时间错格有限差分算子替代传统的差分算子以匹配高精度的空间迭积微分算子,从而发展一种全新的地震波场正演模拟方法,来解决复杂非均匀介质模型中的波场传播问题.为了大幅衰减人工边界引起的反射,本文将完全匹配层(Perfectly Matched Layer,PML)吸收边界条件引入到所构建的方法中,以解决迭积微分算子法的边界问题.以二维波动方程为例,用迭积微分算子法实现了双相介质的地震波场正演模拟,模拟结果表明,双相介质模型较好地解释了含流体孔隙特性.同时也表明迭积微分算子法是一种非常实用、有效的数值模拟方法.  相似文献   

4.
将基于Forsyte广义正交多项式的褶积微分算子法运用于复杂非均匀介质地震波场模拟中,并将计算结果与伪谱法计算结果进行分析比较。通过二者的计算时间对比发现:在同样的计算条件下,褶积微分算子法的采样时间始终小于伪谱法,这是其进行地震波数值模拟的一个明显优势。通过波场快照的对比,褶积微分算子法的模拟结果与伪谱法数值模拟结果的频散效应相当,可为地震波场的值计算提供一种新的选择。  相似文献   

5.
2.5维地震波场褶积微分算子法数值模拟   总被引:5,自引:4,他引:1       下载免费PDF全文
早期的褶积微分算子都是基于正反傅立叶变换而实现的,其精度比四阶有限差分的精度稍高,本文将计算数学中的Forsyte广义正交多项式微分算子与褶积算子相结合,构建了一个新的快速、高精度褶积微分算子,其计算结果非常接近实验函数微分的精确值,精度与16阶有限差分的精度相当,远优于错格伪谱法的精确度.另外,2.5维数值模拟比二维模拟可以更真实地模拟三维介质的臬个剖面的波场,并且2.5维地震波模拟的计算量比三维模拟的计算量及计算耗时要大大减少.本文利用基于Forsyte广义正交多项式褶积微分算子法计算2.5维非均匀介质地震波场,模拟结果表明,该算法的计算速度快,计算精度高,能够直观、高效地反映复杂介质中波场的传播规律,并且2.5维波场数值模拟具有更高的计算效率,是一种非常值得深入研究并广泛应用的方法.  相似文献   

6.
早期的褶积微分算子法都是基于正反傅立叶变换而实现的,其精度比四阶有限差分稍高。本文将计算数学中的Forsyte广义正交多项式微分算子与褶积算子相结合,构建了一个新的快速、高精度褶积微分算子,其计算结果非常接近实验函数微分的精确值,精度与l6阶有限差分相当。粘弹性波动方程更真实地描述了实际地下介质中弹性波的传播规律及其波场特征。本文以二维粘弹性波动方程为例,推导了粘弹性介质波动方程的离散格式,用迭积微分算子法实现了粘弹性介质的地震波场正演模拟,并对其波传播特征进行了分析。计算结果表明该算法能正确模拟粘弹性介质中的地震波,正确地反映粘弹性介质中波场的传播规律。  相似文献   

7.
各向异性介质地震波场的优化褶积微分算子法数值模拟   总被引:1,自引:1,他引:0  
在前人工作基础上,通过对窗函数参数进行优化实现了对基于Shannon奇异核理论的交错网格褶积微分算子的优化过程.应用这种优化褶积微分算子方法对各向异性介质进行了数值模拟,讨论了优化褶积微分算子法模拟的PML吸收边界条件以及稳定性条件,分析了弹性波在此类介质中的传播特征,并与高阶交错网格有限差分方法进行了对比.数值实验结果表明,该方法适用于各向异性介质中弹性波场模拟,精度高,稳定性好,是一种研究复杂介质中地震波传播的有效数值方法.  相似文献   

8.
基于Chebyshev自褶积组合窗的有限差分算子优化方法   总被引:1,自引:1,他引:0       下载免费PDF全文
有限差分法广泛应用于地震波数值模拟、成像和波形反演中,差分数值解的精度直接影响着地震成像和反演的效果.因为有限差分算子可以通过截断伪谱法的空间褶积序列得到,而截断窗函数的属性影响有限差分算子逼近微分算子的精度.具体地讲,窗函数的幅值响应的主瓣和旁瓣决定了有限差分算子逼近的精度,主瓣越窄,旁瓣衰减越大,则有限差分算子逼近微分算子的精度越高,更好地压制数值频散.基于此认识,本文提出了一种基于Chebyshev自褶积组合窗截断逼近的有限差分算子优化方法.Chebyshev自褶积组合窗的主瓣较窄,且旁瓣衰减大,其可通过只调节三个参数,更直观和可视化地控制主瓣和旁瓣的形状,改变有限差分算子逼近微分算子的精度;该窗函数截断逼近的有限差分算子不仅有较大的谱覆盖范围,而且精度误差波动较小,这表明低阶的差分算子可以达到高阶算子的精度,且逼近误差更稳定;从经济上来讲,将有效地减少模拟计算花费,提高计算效率.  相似文献   

9.
本文在对地震波场进行模拟时,采用辛差分格式对波动方程进行时间离散,采用奇异核褶积微分算子对波动方程进行空间离散.该方法尽管增加了一些计算量,但提高了计算精度和稳定性;相对于其他非辛算法,它是全局保结构的,并且具有较强的长时间跟踪能力.该方法为解决大尺度、长时程地震波场的高精度模拟问题提供了一种新的、有效的选择.  相似文献   

10.
波场延拓短算子构造方法   总被引:11,自引:3,他引:11       下载免费PDF全文
在频率-空间域显式叠前深度偏移中,波场深度延拓是通过显 式差分短算子与波场的空间褶积完成的. 基于对显式差分短算子的设计方法的研究,提出了 一种基于相移算子约束的离散光滑插值的构造一维显式短算子的方法. 通过离散光滑插值法 ,在频率-波数域中,以传播区内的相移算子为约束,在传播区外的算子两端处以零点为约 束,进行离散光滑插值,使得所得算子具有二阶光滑可导性,则其对应的频率-空间域中的 算子就可以取得很短. 该方法设计简单,精度高,能够满足波场深度延拓的需要.  相似文献   

11.
Here we introduce generalized momentum and coordinate to transform seismic wave displacement equations into Hamiltonian system. We define the Lie operators associated with kinetic and potential energy, and construct a new kind of second order symplectic scheme, which is extremely suitable for high efficient and long-term seismic wave simulations. Three sets of optimal coefficients are obtained based on the principle of minimum truncation error. We investigate the stability conditions for elastic wave simulation in homogeneous media. These newly developed symplectic schemes are compared with common symplectic schemes to verify the high precision and efficiency in theory and numerical experiments. One of the schemes presented here is compared with the classical Newmark algorithm and third order symplectic scheme to test the long-term computational ability. The scheme gets the same synthetic surface seismic records and single channel record as third order symplectic scheme in the seismic modeling in the heterogeneous model.  相似文献   

12.
求解弹性波方程的辛RKN格式   总被引:2,自引:2,他引:0       下载免费PDF全文
将弹性波方程变换至Hamilton体系,构造适用于弹性波模拟的高效显式二阶辛Runge-Kutta-Nystrm(RKN)格式,运用根数理论得到此格式的阶条件方程组.通过给定系数的限定条件,得到方程的对称解.为了使时间离散误差达到极小,提出数值频率与真实频率比较,通过Taylor展开,得到关于辛系数的限定方程,求解方程组得到最小频散辛RKN格式.对比分析时间演进方程的稳定性,得到使库朗数达到极大值的限定方程,求解方程组得到最稳定辛RKN格式.发现此两种格式为同一格式.新得到的辛RKN格式不依赖于空间离散方法,为了对比的需要,选取有限差分法进行空间离散.在频散、稳定性分析中,与常见辛格式对比,从理论上分析了本文提出的格式在数值频散压制、稳定性提升等方面的优势,数值实验进一步证实了理论分析的正确性.  相似文献   

13.
三角网格有限元法具有网格剖分的灵活性,能有效模拟地震波在复杂介质中的传播.但传统有限元法用于地震波场模拟时计算效率较低,消耗较大计算资源.本文采用改进的核矩阵存储(IKMS)策略以提高有限元法的计算效率,该方法不用组合总体刚度矩阵,且相比于常规有限元法节省成倍的内存.对于时间离散,将有限元离散后的地震波运动方程变换至Hamilton体系,在显式二阶辛Runge-Kutta-Nystr9m(RKN)格式的基础之上加入额外空间离散算子构造修正辛差分格式,通过Taylor展开式得到具有四阶时间精度时间格式,且辛系数全为正数.本文从理论上分析了时空改进方法相比传统辛-有限元方法在频散压制、稳定性提升等方面的优势.数值算例进一步证实本方法具有内存消耗少、稳定性强和数值频散弱等优点.  相似文献   

14.
求解声波方程的辛可分Runge-Kutta方法   总被引:2,自引:0,他引:2       下载免费PDF全文
本文基于声波方程的哈密尔顿系统,构造了一种新的保辛数值格式,简称NSPRK方法.该方法在时间上采用二阶辛可分Runge-Kutta方法,空间上采用近似解析离散算子进行离散逼近.针对本文发展的新方法,我们给出了NSPRK方法在一维和二维情况下的稳定性条件、一维数值频散关系以及二维数值误差,并在计算效率方面与传统辛格式和四阶LWC方法进行了比较.最后,我们将本文方法应用于声波在三层各向同性介质和异常体模型中的波传播数值模拟.数值结果表明,本文发展的NSPRK方法能有效压制粗网格或具有强间断情况下数值方法所存在的数值频散,从而极大地提高了计算效率,节省了计算机内存.  相似文献   

15.
地震波传播的哈密顿表述及辛几何算法   总被引:24,自引:8,他引:24       下载免费PDF全文
地震波传播过程本质上是能量在传播过程中逐步损耗直至殆尽的过程,而在实际应用中,常在无能量损耗假设下,用弹性波动方程或标量波动方程描述它.在哈密顿(Hamilton)体系表述下,地震波传播过程即为一个无限维的哈密顿系统随时间的演化过程.若不计能量损耗,波场演化过程实质上为一个单参数连续的辛变换,因而对应的数值算法应为辛几何算法.本文首先从地震波标量方程出发,给出哈密顿体系下地震波传播的表述,即任意两个时刻的波场是通过辛变换联系起来的.随后,把波场在时间和相空间离散化后,给出了用于波场计算的一些辛格式,如显式辛格式、隐式辛格式和蛙跳辛格式.并进一步讨论了有限差分格式和辛格式的异同.然后,应用显式辛格式和同阶的有限差分方法给出了同一理论速度模型下的波场和Marmousi速度模型下的单炮记录.数值结果表明,辛算法是一类可行的波场模拟的数值算法.在时间步长较小时,有限差分方法是辛算法的一个很好近似.文中的理论和方法,为地震波传播理论及实际应用研究提供了新的途径.  相似文献   

16.
In this paper, we develop a new nearly analytic symplectic partitioned Runge–Kutta method based on locally one-dimensional technique for numerically solving two-dimensional acoustic wave equations. We first split two-dimensional acoustic wave equation into the local one-dimensional equations and transform each of the split equations into a Hamiltonian system. Then, we use both a nearly analytic discrete operator and a central difference operator to approximate the high-order spatial differential operators, which implies the symmetry of the discretized spatial differential operators, and we employ the partitioned second-order symplectic Runge–Kutta method to numerically solve the resulted semi-discrete Hamiltonian ordinary differential equations, which results in fully discretized scheme is symplectic unlike conventional nearly analytic symplectic partitioned Runge–Kutta methods. Theoretical analyses show that the nearly analytic symplectic partitioned Runge–Kutta method based on locally one-dimensional technique exhibits great higher stability limits and less numerical dispersion than the nearly analytic symplectic partitioned Runge–Kutta method. Numerical experiments are conducted to verify advantages of the nearly analytic symplectic partitioned Runge–Kutta method based on locally one-dimensional technique, such as their computational efficiency, stability, numerical dispersion and long-term calculation capability.  相似文献   

17.
求解声波方程的辛RKN格式   总被引:2,自引:2,他引:0       下载免费PDF全文
将声波方程变换至Hamiltion体系,构造了适用于高效声波模拟的二阶显式辛Runge-Kutta-Nyström(RKN)格式,运用根数理论得到此格式的阶条件方程组. 针对两个自由度的辛条件方程组,根据三次项截断误差最小原理得到一种误差最小辛格式;通过分析声波的时间演进方程的稳定性,选择不同的辛系数使演进方程更稳定,并得到了另一种更为稳定辛格式;在频散关系分析中,选择使数值频散最小的辛系数,得到第三种最小频散辛格式. 在理论分析中,这组辛RKN格式相比常见格式在精度控制、数值频散压制以及稳定性提升等方面均具有明显优势;在数值实验中,通过具体算例验证了理论分析的正确性.  相似文献   

18.
Staggered-grid finite-difference (SGFD) schemes have been used widely in seismic modeling. The spatial difference coefficients of the SGFD scheme are generally determined by a Taylor-series expansion (TE) method or optimization methods. However, high accuracy is hardly guaranteed both at small and large wavenumbers by using these conventional methods. We propose a new optimal SGFD scheme based on combining TE and minimax approximation (MA) for high accuracy modeling. The optimal spatial SGFD coefficients are calculated by applying a combination of TE and MA to the dispersion relation, where the implementation of the MA method is based on a Remez algorithm. We adopt the optimal SGFD coefficients to solve first-order spatial derivatives of the elastic wave equations and then perform numerical modeling. Dispersion analyses and seismic modeling show the advantage of the proposed optimal method. The optimal SGFD scheme has greater accuracy than the TE-based SGFD scheme for the same spatial difference operator length. In addition, the optimal SGFD scheme can also adopt a shorter operator length to achieve the high accuracy reducing the computational cost.  相似文献   

19.
VTI介质qP波方程高精度有限差分算子   总被引:6,自引:4,他引:6       下载免费PDF全文
波动方程有限差分法是一种使用广泛的地震波数值模拟方法.但是有限差分法本身固有存在着数值频散问题,会降低地震波场模拟的精度与分辨率.为了克服常规有限差分算子的数值频散,本文针对VTI介质地震波数值模拟问题,构造了频率-空间域qP波波动方程高精度有限差分优化算子,根据最优化理论中高斯-牛顿法确定了高精度有限差分算子的优化系数.利用常规差分算子和高精度优化差分算子对归一化相速度的频散关系精度进行了对比分析,并对均匀各向同性介质和均匀VTI介质中的qP波地震波场进行了有限差分数值模拟,通过频散关系精度分析和波场数值模拟结果表明:有限差分优化算子具有较高的波场数值模拟精度,有效压制了传统有限差分算子数值模拟中的数值频散现象,提高了有限差分算子精度,为VTI介质频率-空间域qP波正演模拟奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号