首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Sea-level rise (SLR) due to climate change is a serious global threat: The scientific evidence is now overwhelming. Continued growth of greenhouse gas emissions and associated global warming could well promote SLR of 1 m in this century, and unexpectedly rapid breakup of the Greenland and West Antarctic ice sheets might produce a 3–5 m SLR. In this paper, we assess the consequences of continued SLR for 84 coastal developing countries. Geographic Information System (GIS) software has been used to overlay the best available, spatially disaggregated global data on critical impact elements (land, population, agriculture, urban extent, wetlands, and GDP), with the inundation zones projected for 1–5 m SLR. Our results reveal that tens of millions of people in the developing world are likely to be displaced by SLR within this century; and accompanying economic and ecological damage will be severe for many. At the country level results are extremely skewed, with severe impacts limited to a relatively small number of countries.  相似文献   

2.
Against a background of climate change, Macau is very exposed to sea level rise(SLR) because of its low elevation,small size, and ongoing land reclamation. Therefore, we evaluate sea level changes in Macau, both historical and, especially,possible future scenarios, aiming to provide knowledge and a framework to help accommodate and protect against future SLR. Sea level in Macau is now rising at an accelerated rate: 1.35 mm yr-1over 1925–2010 and jumping to 4.2 mm yr-1over 1970–2010, which outpaces the rise in global mean sea level. In addition, vertical land movement in Macau contributes little to local sea level change. In the future, the rate of SLR in Macau will be about 20% higher than the global average, as a consequence of a greater local warming tendency and strengthened northward winds. Specifically, the sea level is projected to rise 8–12, 22–51 and 35–118 cm by 2020, 2060 and 2100, respectively, depending on the emissions scenario and climate sensitivity. Under the +8.5 W m-2Representative Concentration Pathway(RCP8.5) scenario the increase in sea level by2100 will reach 65–118 cm—double that under RCP2.6. Moreover, the SLR will accelerate under RCP6.0 and RCP8.5, while remaining at a moderate and steady rate under RCP4.5 and RCP2.6. The key source of uncertainty stems from the emissions scenario and climate sensitivity, among which the discrepancies in SLR are small during the first half of the 21 st century but begin to diverge thereafter.  相似文献   

3.
Estimating coastal recession due to sea level rise: beyond the Bruun rule   总被引:2,自引:0,他引:2  
Accelerated sea level rise (SLR) in the twenty-first century will result in unprecedented coastal recession, threatening billions of dollars worth of coastal developments and infrastructure. Therefore, we cannot continue to depend on the highly uncertain coastal recession estimates obtained via the simple, deterministic method (Bruun rule) that has been widely used over the last 50?years. Furthermore, the emergence of risk management style coastal planning frameworks is now requiring probabilistic (rather than deterministic, single value) estimates of coastal recession. This paper describes the development and application of a process based model (PCR model) which provides probabilistic estimates of SLR driven coastal recession. The PCR model is proposed as a more appropriate and defensible method for determining coastal recession due to SLR for planning purposes in the twenty-first century and beyond.  相似文献   

4.
长江口海平面上升预测及其对滨海湿地影响   总被引:1,自引:0,他引:1  
选择吴淞站和吕四站2个验潮站数据,通过统计学方法进行长江口海平面上升预测,从而构建了一套长江口地区较完备的海平面上升情景库:以2013年为基准年份,其最佳预测值的范围在2030年、2050年、2100年分别为50~217 mm,118~430 mm,256~1215 mm。以此情景库为基础,探究海平面上升变化对长江口滨海湿地的影响,结果表明:随着海平面上升值的增加,长江口滨海湿地的面积不断减少;在基于验潮站数据作趋势外推得到的情景下,湿地面积减少较平缓,而在考虑全球变暖背景的情景下,湿地面积减少迅速;且不论在何种情景下,时间尺度越大,湿地减少的面积越大。  相似文献   

5.
We synthesize existing evidence on the ecological history of the Florida Everglades since its inception ??7?ka (calibrated kiloannum) and evaluate the relative impacts of sea level rise, climate variability, and human alteration of Everglades hydrology on wetland plant communities. Initial freshwater peat accumulation began between 6 and 7?ka on the platform underlying modern Florida Bay when sea level was ??6.2?m below its current position. By 5?ka, sawgrass and waterlily peats covered the area bounded by Lake Okeechobee to the north and the Florida Keys to the south. Slower rates of relative sea level rise ??3?ka stabilized the south Florida coastline and initiated transitions from freshwater to mangrove peats near the coast. Hydrologic changes in freshwater marshes also are indicated ??3?ka. During the last ??2?ka, the Everglades wetland was affected by a series of hydrologic fluctuations related to regional to global-scale fluctuations in climate and sea level. Pollen evidence indicates that regional-scale droughts lasting two to four centuries occurred ??1?ka and ??0.4?ka, altering wetland community composition and triggering development of characteristic Everglades habitats such as sawgrass ridges and tree islands. Intercalation of mangrove peats with estuarine muds ??1?ka indicates a temporary slowing or stillstand of sea level. Although sustained droughts and Holocene sea level rise played large roles in structuring the greater Everglades ecosystem, twentieth century reductions in freshwater flow, compartmentalization of the wetland, and accelerated rates of sea level rise had unprecedented impacts on oxidation and subsidence of organic soils, changes/loss of key Everglades habitats, and altered distribution of coastal vegetation.  相似文献   

6.
About 75 % of the Antarctic surface mass gain occurs over areas below 2,000 m asl, which cover 40 % of the grounded ice-sheet. As the topography is complex in many of these regions, surface mass balance modelling is highly dependent on horizontal resolution, and studying the impact of Antarctica on the future rise in sea level requires physical approaches. We have developed a computationally efficient, physical downscaling model for high-resolution (15 km) long-term surface mass balance (SMB) projections. Here, we present results of this model, called SMHiL (surface mass balance high-resolution downscaling), which was forced with the LMDZ4 atmospheric general circulation model to assess Antarctic SMB variability in the twenty first and the twenty second centuries under two different scenarios. The higher resolution of SMHiL better reproduces the geographical patterns of SMB and increase significantly the averaged SMB over the grounded ice-sheet for the end of the twentieth century. A comparison with more than 3200 quality-controlled field data shows that LMDZ4 and SMHiL reproduce the observed values equally well. Nevertheless, field data below 2,000 m asl are too scarce to efficiently show the added value of SMHiL and measuring the SMB in these undocumented areas should be a future scientific priority. Our results suggest that running LMDZ4 at a finer resolution (15 km) may give a future increase in SMB in Antarctica that is about 30 % higher than by using its standard resolution (60 km) due to the higher increase in precipitation in coastal areas at 15 km. However, a part (~15 %) of these discrepancies could be an artefact from SMHiL since it neglects the foehn effect and likely overestimates the precipitation increase. Future changes in the Antarctic SMB at low elevations will result from the competition between higher snow accumulation and runoff. For this reason, developing downscaling models is crucial to represent processes in sufficient detail and correctly model the SMB in coastal areas.  相似文献   

7.
Urban areas are pivotal to global adaptation and mitigation efforts. But how do cities actually perform in terms of climate change response? This study sheds light on the state of urban climate change adaptation and mitigation planning across Europe. Europe is an excellent test case given its advanced environmental policies and high urbanization. We performed a detailed analysis of 200 large and medium-sized cities across 11 European countries and analysed the cities’ climate change adaptation and mitigation plans. We investigate the regional distribution of plans, adaptation and mitigation foci and the extent to which planned greenhouse gas (GHG) reductions contribute to national and international climate objectives. To our knowledge, it is the first study of its kind as it does not rely on self-assessment (questionnaires or social surveys). Our results show that 35 % of European cities studied have no dedicated mitigation plan and 72 % have no adaptation plan. No city has an adaptation plan without a mitigation plan. One quarter of the cities have both an adaptation and a mitigation plan and set quantitative GHG reduction targets, but those vary extensively in scope and ambition. Furthermore, we show that if the planned actions within cities are nationally representative the 11 countries investigated would achieve a 37 % reduction in GHG emissions by 2050, translating into a 27 % reduction in GHG emissions for the EU as a whole. However, the actions would often be insufficient to reach national targets and fall short of the 80 % reduction in GHG emissions recommended to avoid global mean temperature rising by 2 °C above pre-industrial levels.  相似文献   

8.
The State of Florida (USA) is especially threatened by sea level rise due to extensive low elevation coastal habitats (approximately 8,000?km2?<?1?m above sea level) where the majority of the human population resides. We used the Sea Level Affecting Marshes Model (SLAMM) simulation to improve understanding of the magnitude and location of these changes for 58,000?ha of the Waccasassa Bay region of Florida??s central Gulf of Mexico coast. To assess how well SLAMM portrays changes in coastal wetland systems resulting from sea level rise, we conducted a hindcast in which we compared model results to 30?years of field plot data. Overall, the model showed the same pattern of coastal forest loss as observed. Prospective runs of SLAMM using 0.64?m, 1?m and 2?m sea level rise scenarios predict substantial changes over this century in the area covered by coastal wetland systems including net losses of coastal forests (69%, 83%, and 99%, respectively) and inland forests (33%, 50%, and 88%), but net gains of tidal flats (17%, 142%, and 3,837%). One implication of these findings at the site level is that undeveloped, unprotected lands inland from the coastal forest should be protected to accommodate upslope migration of this natural community in response to rising seas. At a broader scale, our results suggest that coastal wetland systems will be unevenly affected across the Gulf of Mexico as sea level rises. Species vulnerable to these anticipated changes will experience a net loss or even elimination.  相似文献   

9.
Two linear methods, including the simple linear addition and linear addition by expansion, and numerical simulations were employed to estimate storm surges and associated flooding caused by Hurricane Andrew for scenarios of sea level rise (SLR) from 0.15 m to 1.05 m with an interval of 0.15 m. The interaction between storm surge and SLR is almost linear at the open Atlantic Ocean outside Biscayne Bay, with slight reduction in peak storm surge heights as sea level rises. The nonlinear interaction between storm surges and SLR is weak in Biscayne Bay, leading to small differences in peak storm surge heights estimated by three methods. Therefore, it is appropriate to estimate elevated storm surges caused by SLR in these areas by adding the SLR magnitude to storm surge heights. However, the magnitude and extent of inundation at the mainland area by Biscayne Bay estimated by numerical simulations are, respectively, 22–24 % and 16–30 % larger on average than those generated by the linear addition by expansion and the simple linear addition methods, indicating a strong nonlinear interaction between storm surge and SLR. The population and property affected by the storm surge inundation estimated by numerical simulations differ up to 50–140 % from that estimated by two linear addition methods. Therefore, it is inappropriate to estimate the exacerbated magnitude and extent of storm surge flooding and affected population and property caused by SLR by using the linear addition methods. The strong nonlinear interaction between surge flooding and SLR at a specific location occurs at the initial stage of SLR when the water depth under an elevated sea level is less than 0.7 m, while the interaction becomes linear as the depth exceeds 0.7 m.  相似文献   

10.
一次冷锋过境后的海风三维结构数值模拟   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究大尺度系统风对海风的影响以及海风三维结构特征,利用山东省123个地面自动站资料、青岛地区三十多个内陆及沿海、海岛观测站以及奥帆赛场3个浮标站资料,对2006年8月21日青岛一次海风个例进行了分析,并利用美国俄克拉荷马大学风暴分析预测中心开发的ARPS(the Advanced Regional Prediction System)模式,对海风过程进行了数值模拟研究。结果发现:在较强的离岸风背景下,当内陆气温高于海面气温2℃左右时,海风也可以发生。海风首先在海岸线附近的海上开始,发展的同时向内陆及远海地区推进。海风低层环流很浅,主要位于500 m以下。在较强的偏北离岸风下,海风向内陆推进的距离很短。偏北的大尺度系统风由于渤海冷下垫面的影响,不利于青岛海风的维持。海风开始时,在1500~2500 m高度处同时有反环流出现,但直到傍晚前后,海风的垂直环流圈才发展得比较清晰,其高度也更接近地面。海风消亡后,高层的垂直环流圈及反环流维持3 h左右才逐渐消亡。  相似文献   

11.
Coastal sector impacts from sea level rise (SLR) are a key component of the projected economic damages of climate change, a major input to decision-making and design of climate policy. Moreover, the ultimate global costs to coastal resources will depend strongly on adaptation, society’s response to cope with the local impacts. This paper presents a new open-source optimization model to assess global coastal impacts from SLR from the perspective of economic efficiency. The Coastal Impact and Adaptation Model (CIAM) determines the optimal strategy for adaptation at the local level, evaluating over 12,000 coastal segments, as described in the DIVA database (Vafeidis et al. 2006), based on their socioeconomic characteristics and the potential impacts of relative sea level rise and uncertain sea level extremes. A deterministic application of CIAM demonstrates the model’s ability to assess local impacts and direct costs, choose the least-cost adaptation, and estimate global net damages for several climate scenarios that account for both global and local components of SLR (Kopp et al. 2014). CIAM finds that there is large potential for coastal adaptation to reduce the expected impacts of SLR compared to the alternative of no adaptation, lowering global net present costs through 2100 by a factor of seven to less than $1.7 trillion, although this does not include initial transition costs to overcome an under-adapted current state. In addition to producing aggregate estimates, CIAM results can also be interpreted at the local level, where retreat (e.g., relocate inland) is often a more cost-effective adaptation strategy than protect (e.g., construct physical defenses).  相似文献   

12.
Global warming may result in substantial sea level rise and more intense hurricanes over the next century, leading to more severe coastal flooding. Here, observed climate and sea level trends over the last century (c. 1900s to 2000s) are used to provide insight regarding future coastal inundation trends. The actual impacts of Hurricane Katrina (2005) in New Orleans are compared with the impacts of a similar hypothetical hurricane occurring c. 1900. Estimated regional sea level rise since 1900 of 0.75 m, which contains a dominant land subsidence contribution (0.57 m), serves as a ‘prototype’ for future climate-change induced sea level rise in other regions. Landform conditions c. 1900 were estimated by changing frictional resistance based on expected additional wetlands at lower sea levels. Surge simulations suggest that flood elevations would have been 15 to 60 % lower c. 1900 than the conditions observed in 2005. This drastic change suggests that significantly more flood damage occurred in 2005 than would have occurred if sea level and climate conditions had been like those c. 1900. We further show that, in New Orleans, sea level rise dominates surge-induced flooding changes, not only by increasing mean sea level, but also by leading to decreased wetland area. Together, these effects enable larger surges. Projecting forward, future global sea level changes of the magnitude examined here are expected to lead to increased flooding in coastal regions, even if the storm climate is unchanged. Such flooding increases in densely populated areas would presumably lead to more widespread destruction.  相似文献   

13.
Tens of millions of people around the world are already exposed to coastal flooding from tropical cyclones. Global warming has the potential to increase hurricane flooding, both by hurricane intensification and by sea level rise. In this paper, the impact of hurricane intensification and sea level rise are evaluated using hydrodynamic surge models and by considering the future climate projections of the Intergovernmental Panel on Climate Change. For the Corpus Christi, Texas, United States study region, mean projections indicate hurricane flood elevation (meteorologically generated storm surge plus sea level rise) will, on average, rise by 0.3 m by the 2030s and by 0.8 m by the 2080s. For catastrophic-type hurricane surge events, flood elevations are projected to rise by as much as 0.5 m and 1.8 m by the 2030s and 2080s, respectively.  相似文献   

14.
IPCC《气候变化中的海洋和冰冻圈特别报告》评估了气候变化对全球、区域海平面变化和极端海面(极值水位)升高的贡献,以及海平面上升对低海拔(小鱼10 m)岛屿、沿海地区和社会的影响及相关的风险。评估表明,全球变暖背景下,全球平均海平面上升的证据是确凿的,且明显加速(高信度),极端海面高度升高,主要是由陆地冰川和冰盖融化以及海洋热膨胀引起,且前者的贡献已大于后者(很高信度);与此同时,海洋变暖速率倍增,强热带气旋、风暴潮增多,极值水位重现期缩短;至21世纪末,全球海平面还将上升约0.43 m(温室气体低排放情景,RCP2.6)和0.84 m(高排放情景,RCP8.5)(中等信度),很多沿海地区当前较少发生的百年一遇的极值水位将变为一年一遇或更频繁,而对于许多沿海低洼地而言,类似事件甚至在21世纪中叶就可能发生(高信度)。评估还表明,持续上升的海平面、趋于频发的极值水位,以及人为地面沉降等因素,增加了沿海社会-生态系统的暴露度和脆弱性;并且,与海平面上升有关的危害(险)性事件,如海岸侵蚀、洪灾、盐碱化和生境退化等将显著增加(高信度)。报告指出,如未采取充分的适应海平面上升的措施,在RCP8.5情景下,沿海大城市、城市环礁群岛、热带农业三角洲地区和北极沿岸社区将处于高或很高的灾害风险中(高信度)。  相似文献   

15.
Public attitudes about climate change reveal a contradiction. Surveys show most Americans believe climate change poses serious risks but also that reductions in greenhouse gas (GHG) emissions sufficient to stabilize atmospheric GHG concentrations can be deferred until there is greater evidence that climate change is harmful. US policymakers likewise argue it is prudent to wait and see whether climate change will cause substantial economic harm before undertaking policies to reduce emissions. Such wait-and-see policies erroneously presume climate change can be reversed quickly should harm become evident, underestimating substantial delays in the climate’s response to anthropogenic forcing. We report experiments with highly educated adults – graduate students at MIT – showing widespread misunderstanding of the fundamental stock and flow relationships, including mass balance principles, that lead to long response delays. GHG emissions are now about twice the rate of GHG removal from the atmosphere. GHG concentrations will therefore continue to rise even if emissions fall, stabilizing only when emissions equal removal. In contrast, most subjects believe atmospheric GHG concentrations can be stabilized while emissions into the atmosphere continuously exceed the removal of GHGs from it. These beliefs – analogous to arguing a bathtub filled faster than it drains will never overflow – support wait-and-see policies but violate conservation of matter. Low public support for mitigation policies may arise from misconceptions of climate dynamics rather than high discount rates or uncertainty about the impact of climate change. Implications for education and communication between scientists and nonscientists (the public and policymakers) are discussed.  相似文献   

16.
Estimates of future flood hazards made under the assumption of stationary mean sea level are biased low due to sea-level rise (SLR). However, adjustments to flood return levels made assuming fixed increases of sea level are also inadequate when applied to sea level that is rising over time at an uncertain rate. SLR allowances—the height adjustment from historic flood levels that maintain under uncertainty the annual expected probability of flooding—are typically estimated independently of individual decision-makers’ preferences, such as time horizon, risk tolerance, and confidence in SLR projections. We provide a framework of SLR allowances that employs complete probability distributions of local SLR and a range of user-defined flood risk management preferences. Given non-stationary and uncertain sea-level rise, these metrics provide estimates of flood protection heights and offsets for different planning horizons in coastal areas. We illustrate the calculation of various allowance types for a set of long-duration tide gauges along U.S. coastlines.  相似文献   

17.
OBSERVATION AND ANALYSIS OF SEA SURFACE WIND OVER THE QIONGZHOU STRAIT   总被引:1,自引:1,他引:0  
The spatial variation and diurnal fluctuation of sea surface wind over the Qiongzhou Strait were described using verified datasets from automatic weather stations on board a ferry, buoys, and on the coast. Results are as follows: (1) On average, sea surface wind speed is 3–4 m/s larger over the Qiongzhou Strait than in the coastal area. Sea surface wind speeds of 8.0 m/s or above (on Beaufort scale five) in the coastal area are associated with speeds 5–6 m/s greater over the surface of the Qiongzhou Strait. (2) Gust coefficients for the Qiongzhou Strait decrease along with increasing wind speeds. When coastal wind speed is less than scale five, the average gust coefficient over the sea surface is between 1.4 and 1.5; when wind speed is equal to scale five or above, the average gust coefficient is about 1.35. (3) In autumn and winter, the diurnal differences of average wind speed and wind consistency over the strait are less than those in the coastal area; when wind speed is 10.8 m/s (scale six) or above, the diurnal difference of average wind speed decreases while wind consistency increases for both the strait and the coast.  相似文献   

18.
The leading mode of southern hemisphere (SH) climatic variability, the southern annular mode (SAM), has recently seen a shift towards its positive phase due to stratospheric ozone depletion and increasing greenhouse gas (GHG) concentrations. Here we examine how sensitive the SAM (defined as the leading empirical orthogonal function of SH sea level pressure anomalies) is to future GHG concentrations. We determine its likely evolution for three intergovernmental panel on climate change (IPCC) special report on emission scenarios (SRES) for austral summer and winter, using a multi-model ensemble of IPCC fourth assessment report models which resolve stratospheric ozone recovery. During the period of summer ozone recovery (2000–2050), the SAM index exhibits weakly negative, statistically insignificant trends due to stratospheric ozone recovery which offsets the positive forcing imposed by increasing GHG concentrations. Thereafter, positive SAM index trends occur with magnitudes that show sensitivity to the SRES scenario utilised, and thus future GHG emissions. Trends are determined to be strongest for SRES A2, followed by A1B and B1, respectively. The winter SAM maintains a similar dependency upon GHG as summer, but over the entire twenty-first century and to a greater extent. We also examine the influence of ozone recovery by comparing results to models that exclude stratospheric ozone recovery. Projections are shown to be statistically different from the aforementioned results, highlighting the importance of ozone recovery in governing SAM-evolution. We therefore demonstrate that the future SAM will depend both upon GHG emissions and stratospheric ozone recovery.  相似文献   

19.
The main assumptions and findings are presented on a comparative analysis of three GHG long-term emissions scenarios for Brazil. Since 1990, land-use change has been the most important source of GHG emissions in the country. The voluntary goals to limit Brazilian GHG emissions pledged a reduction in between 36.1% and 38.9% of GHG emissions projected to 2020, to be 6–10% lower than in 2005. Brazil is in a good position to meet the voluntary mitigation goals pledged to the United Nations Framework Convention on Climate Change (UNFCCC) up to 2020: recent efforts to reduce deforestation have been successful and avoided deforestation will form the bulk of the emissions reduction commitment. In 2020, if governmental mitigation goals are met, then GHG emissions from the energy system would become the largest in the country. After 2020, if no additional mitigation actions are implemented, GHG emissions will increase again in the period 2020–2030, due to population and economic growth driving energy demand, supply and GHG emissions. However, Brazil is in a strong position to take a lead in low-carbon economic and social development due to its huge endowment of renewable energy resources allowing for additional mitigation actions to be adopted after 2020.

Policy relevance

The period beyond 2020 is now relevant in climate policy due to the Durban Platform agreeing a ‘protocol, legal instrument or agreed outcome with legal force’ that will have effect from 2020. After 2020, Brazil will be in a situation more similar to other industrialized countries, faced with a new challenge of economic development with low GHG energy-related emissions, requiring the adoption of mitigation policies and measures targeted at the energy system. Unlike the mitigation actions in the land-use change sector, where most of the funding will come from the national budgets due to sovereignty concerns, the huge financial resources needed to develop low-carbon transport and energy infrastructure could benefit from soft loans channelled to the country through nationally appropriate mitigation actions (NAMAs).  相似文献   

20.
The morphodynamic response of large tidal inlet/basin systems to future relative sea level rise (RSLR), incorporating both Eustatic sea level rise and local land subsidence effects, is qualitatively investigated using the state-of-the-art Delft3D numerical model and the Realistic analogue modelling philosophy. The modelling approach is implemented on a highly schematised morphology representing a typical large inlet/basin system located on the Dutch Wadden Sea (Ameland Inlet) over a 110-year study period. Three different RSLR Scenarios are considered: (a) No RSLR, (b) IPCC lower sea level rise (SLR) projection (0.2?m SLR by 2100 compared to 1990) and land subsidence, and (c) IPCC higher SLR projection (0.7?m SLR by 2100 compared to 1990) and land subsidence. Model results indicate that, for the 110-year study duration, the existing flood dominance of the system will increase with increasing rates of RSLR causing the ebb-tidal delta to erode and the basin to accrete. The rates of erosion/accretion are positively correlated with the rate of RSLR. Under the No RSLR condition, the tidal flats continue to develop while under the high RSLR scenario tidal flats eventually drown, implying that under this condition the system may degenerate into a tidal lagoon within the next 110?years. The tidal flats are stable under the low RSLR scenario implying that, at least for the next 100?years, this may be the critical RSLR condition for the maintenance of the system. Essentially the results of this study indicate that, as the Eustatic SLR is likely to be greater than the apparently critical rise of 0.2?m (by 2100 compared to 1990), the tidal flats in these systems will at least diminish. In the worst, but not unlikely, scenario that the Eustatic SLR is as high as the IPCC higher projections (0.7?m by 2100), the tidal flats may completely disappear. In either case, the associated environmental and socio-economic impacts will be massive. Therefore, more research focusing on the quantification of the physical and socio-economic impacts of RSLR on these systems is urgently needed to enable the development of effective and timely adaptation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号