首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对《国土资源环境承载能力评价技术要求(试行)(地质部分)》中承载状态评价指标与社会经济建设关联性差的问题,以地面沉降为研究对象,将高铁线路坡度变化作为地面沉降承载状态评价的指标,通过对京津冀地区不均匀地面沉降对现有运行高铁线路坡度的影响分析,评估了地面沉降对高速铁路轨道平顺性的影响,建立起地面沉降与高铁安全运行之间的关系。从而使地质环境承载状态评价指标与社会经济建设相关联,增强承载状态评价结果的实用性,同时为相关研究工作提供思路借鉴。  相似文献   

2.
北京平原区快速发展的地面沉降对高速铁路的发展构成了威胁,地面沉降与过量开采地下水造成的水位下降关系密切,为此有针对性地开展基于高速铁路的地下水动态与地面沉降相关关系研究对于高铁安全运行意义重大,特别是对于制定高铁沿线地下水开采方案、地面沉降减缓措施和工程措施至关重要。基于其对高速铁路的影响模式,本文将地面沉降分为区域沉降和局部沉降两种类型。针对区域沉降,利用Logistic方程,使用天竺、望京及王四营分层地面沉降和地下水位数据,构建了不同层位地下水水位变化与地面沉降之间的相关关系模型,通过ABAQUS计算局部地区,对于6m高路堤和15m CFG桩处理深度的地基而言,当渗透系数k=2m/d,距离线路边缘25m处浅层地下水下降10m将产生约61—85mm的沉降。  相似文献   

3.
利用高分辨率InSAR时序分析技术研究了上海地铁10号线建设和运营期地面沉降的时空变化特征。结果表明:上海软土地基中的地铁沉降表现出如下特征:(1)线路区间隧道沉降量较大,而车站沉降量较小,沿线路方向沉降较为均匀;(2)线路两侧的沉降影响范围基本对称,5mm沉降的影响半径为100~150m;(3)线路纵向呈现沉降槽,最大沉降量位于纵向剖面中心,达10~15mm,影响范围为50~100m;(4)线路沉降具有阶段性,主要沉降发生在建设期,运营初期沉降速率有所增加。上述沉降效应表明高分辨率InSAR技术可从空间上完整表现地铁线上沉降的分布特征,从时间上揭示施工和运营阶段地面沉降的变化特征,对于地铁开挖施工期间和竣工运营期间的沉降监测具有显著意义。  相似文献   

4.
浊水溪冲积扇是台湾水资源最为丰富但也是地面沉降最严重地区。近年来该区域的地面沉降因有可能威胁高铁行车安全而备受关注。本文整合历年累积的地下水位及地面沉降等相关监测数据,验证了地下水位变化与含水层补给之机制,探讨了地下水周期性波降条件下土层压缩特性以及高铁路堤与桩基础工程结构的沉降行为。认为对于设置桩基础的线型高架结构而言,区域性地下水位波降不致增加桥墩间的差异沉降,但桩基础若承受邻近局部的额外载重,则可能伴随地下水位波降产生持续性的差异沉降,其长期效应将对线型交通结构物的平整度及安全性造成负面影响。  相似文献   

5.
近几年,盘锦地区的地面沉降问题开始受到人们的关注。为了掌握盘锦地区地面沉降现状,包括沉降中心位置、沉降区面积、沉降量、沉降速率等,选取2013-2016年覆盖研究区的19景C波段Radarsat-2 SAR数据,采用SBAS-InSAR技术提取了盘锦地区地面沉降速率和累积沉降量。结果表明,研究区内存在两个沉降区:曙四联沉降区,面积约为43.6 km2,最大沉降速率为-151.49 mm·a-1;龙王村沉降区,面积约为33.28 km2,最大沉降速率为-119.55 mm·a-1。通过地表形变量时序分析,发现两个沉降区的范围随着时间不断扩大,累积沉降量不断增大。与水准监测数据进行对比后发现,两种监测方法得到的沉降区范围和沉降量大体一致,但两者间仍有差别。对研究区内油田井场分布和地下水水位降落漏斗特征与沉降区分布进行了对比分析,研究表明地面沉降与地下水开采、油气资源开采、新构造运动等多种因素具有密切关系。研究结果将为地质环境的管理、地面沉降灾害的防治及资源开发利用规划提供基础依据。  相似文献   

6.
基于部分耦合原理,采用TOUGH2和FLAC3D建立抽水引起的三维地面沉降弹塑性模型,模型中综合考虑土体的弹塑性变形特征、渗流-应力的双向耦合作用以及参数的非线性,探讨了持续抽水和脉冲抽水两种抽水过程中地面沉降发展演化过程。研究结果表明:(1)集中抽水停止后地面沉降会发生回弹,抽水中心沉降量不断减小。由于水平方向存在水力梯度,地下水继续向地下水位漏斗中心渗流从而导致沉降漏斗的范围仍继续扩大;(2)脉冲抽水导致土体的孔隙水压力、渗透系数以及沉降量均呈周期性波动变化,地面沉降会局部回弹,但总体仍随着抽水的持续,沉降量不断增加;(3)在抽水量相同前提下,对比持续抽水与脉冲抽水两种方式引发的塑形沉降量可知,抽水速率小、脉冲式多次开采导致的塑性沉降量较小,持续抽水的抽水速率越小、脉冲抽水间隔越短越有利于控制地面沉降。研究成果为地面沉降数值模拟提供了一种新方法,其中算例研究能为抽水条件下地面沉降的控制提供参考。  相似文献   

7.
连云港市位于苏北沿海地区,地面沉降灾害面积较大,多地沉降速率超过20 mm/a,徐圩的沉降现状尤为严重。为了能够对徐圩地区的地面沉降进行精细化观测,文章采用BOTDR分布式光纤感测技术,对徐圩镇127 m深的钻孔地层进行了两年多的全断面精细化监测。结果表明:徐圩镇共有四个承压含水层组,I-1隔水层和I-2隔水层土体沉降量分别占总沉降量的70.29 %、24.59 %,抽水层的土体最大沉降量仅占比1.38 %。I-1隔水层和I-2隔水层的地层岩性包括淤泥质黏土(L2)、亚黏土(L3)、亚砂土夹粉砂(L4),总厚度为44 m,由于抽水过程中隔水层向含水层失水,导致该隔水层土体固结压缩。同时,工程建设附加荷载对地面沉降的影响也不可忽视。徐圩地区现阶段的沉降仍在继续发生,但沉降速率有减小的趋势。BOTDR技术可有效获取地面沉降钻孔全断面的土层变形分布信息,为地面沉降评价提供了一种精细化的分布式监测手段。  相似文献   

8.
《地下水》2021,(1)
新建鲁南高铁菏曲段评估范围内存在济宁城区和菏泽城区附近两处明显的地面沉降区,开展该区域地面沉降研究,采取有效地防控措施,对指导铁路工程施工及运营保障具有十分重要的意义。采用模糊层次分析方法,根据地面沉降危险性评价指标体系,基于粘性土层累积厚度、地面沉降速率、地下水开采量三个评价指标对地面沉降影响因素进行分析,并利用MAPGIS技术划分地面沉降易发性分区,结果可知:鲁南高铁菏曲段评估范围可划分为地面沉降高易发区、地面沉降中易发区、地面沉降低易发区和地面沉降不易发区四个区间。地面沉降高易发区主要分布在郓城县唐庙镇至菏泽东城区一带,沉降速率较大,过量开采地下水易引发地面沉降。应结合划分结果有针对性的制定分区防控措施,为规避地质灾害和保障铁路建设及运营安全提供科学依据。  相似文献   

9.
为掌握盘锦地区地面沉降现状,包括沉降中心位置、沉降区面积、沉降量、沉降速率等,选取2013-2016年覆盖研究区的19期C波段Radasat-2数据,采用SBAS-InSAR技术提取盘锦地区地面沉降速率和累积地面沉降量。结果表明,研究区内存在两个沉降区:曙四联沉降区,面积约为43.6km^2,最大沉降速率为-151.49mm/a;龙王村沉降区,面积约为33.28km^2,最大沉降速率为-119.55mm/a。与2007-2009年的3期ASAR数据得到的结果进行对比后发现,两者得到的沉降区基本一致。通过地面沉降监测数据的时序分析,累积沉降量和沉降区范围均随着时间不断增大。  相似文献   

10.
本文首先通过分析地面沉降的诱发因素和研究对象,发现具有灰色特性,并且地面沉降随时间的变化曲线与Verhulst模型曲线相似,因而可以应用该模型预测太原市地面沉降。其次根据五个沉降中心中30个典型的水准观测点的累积沉降量建立了灰色Verhulst预测模型。最后预测了2010年与2015年的地面沉降发展趋势,得出2010年总体沉降范围向外扩展,小店中心扩大幅度较大,吴家堡年均沉降速率持续减缓;到2015年西张沉降趋势基本趋于稳定状态,万柏林和下元沉降速率减缓,吴家堡沉降幅度变化不大,万柏林、下元和吴家堡的沉降范围已连成一片,小店中心最大沉降量达1 508 mm,年均沉降速率为45 mm/a。  相似文献   

11.
地面沉降的快速发展对京津城际铁路的安全运行构成潜在威胁,特别是差异沉降较大的地段,对铁路桥梁及轨道稳定性产生较大影响。利用ABAQUS有限元,分析了局部抽水引起的地下水位下降和地面沉降对铁路桥梁桩基承载力和轨道混凝土支承层的影响,探讨了作用方式和影响程度,从而为制定高速铁路地面沉降防治工程措施提供技术依据。  相似文献   

12.
以上海4条地铁线路道床长期沉降监测资料为基础,分析了地铁隧道的纵向沉降特征;结合该地区地质环境调查资料,深入分析地铁隧道沉降与下卧层地层结构、浅部地下水位变化以及区域地面沉降三个地质环境因素之间的相互作用关系。结果表明,地铁隧道下卧地层结构差异是地铁隧道沉降差异性的重要地质环境因素,深基坑降排水引起降水目的含水层地下水位下降,使得降水目的层以及相邻软黏性土层发生较大的压缩变形,导致以降水目的层上覆软黏性土层为承载体的地铁隧道也随之发生沉降,区域地面沉降也是地铁隧道沉降的重要影响因素。  相似文献   

13.
地面沉降是福州市的主要地质灾害之一,自20世纪中期以来就有监测资料显示福州市存在地面沉降问题。本文基于永久散射体雷达干涉测量技术(IPTA),处理了福州市2008~2014年间多时相、高分辨率TerraSAR-X数据,对福州市6年时间的地面沉降进行监测分析,根据研究区地面沉降历史、建设发展现状及沉降异常区分布,着重分析了复杂因素影响下福州市地面沉降的时空变化规律。结果表明:福州市总体年均沉降率-15 mm ·a-1左右,存在多个明显的快速沉降区;与1960~1990年的监测资料对比发现,沉降中心由地热温泉区向工程密集建设区转移;较大沉降区以快速线性沉降为主;地面沉降特征的变化受到多种复杂因素叠加影响,导致地面沉降空间扩张、速率加剧。该研究成果可为福州市或其他沿海城市地面沉降风险评估、地面沉降防控等提供一定的科学依据和参考。  相似文献   

14.
辽宁省盘锦市具有丰富的石油、天然气、煤等矿产资源,由于油气开发及南部沿海区域因海水入侵地下水开采持续增长等影响,导致该地区地面沉降明显。为掌握和分析该市地表形变的变化特征,本文利用2007~2011年间22景L波段的ALOS/PALSAR数据,采用PS-InSAR技术对其进行了地面沉降监测。从得到的年沉降速率图和沉降中心的时间序列图可知,盘锦市地面沉降主要分布在城镇、油田开采区以及沿海区域。四年间,最大年沉降速率达194mm/a,经调查发现主要是因该区域油气开采所致;沿海地区的年沉降速率约为50mm/a。研究表明,盘锦地区的地面沉降与油气开采存在空间一致性,同时也证明PS-InSAR技术可用于长时间序列的地面沉降监测。  相似文献   

15.
地面沉降问题严重影响着鲁西南经济发展区交通工程建设。文中选择某线性工程两侧5 km范围作为研究区,文章收集RadarSAT-2(2017—2020年)、Sentinel-1A(2019—2020年)存档数据和沿线区域地质、水文地质、矿产开发资料,采用时序InSAR分析的方法,对研究区沿线地面沉降分布特征及规律进行综合分析。研究结果表明:研究区主要地面沉降诱因是煤矿采空区塌陷和地下水超量开采,前者以矿区工作面为中心形成沉降漏斗,沉降速率变化和沉降中心移动与煤矿作业工作面挖掘进度和转移密切相关;后者沉降分布规律与地下水开采使用点相关,形成与地下水开采使用范围相近的沉降带。研究区在2017—2020年内持续发生沉降,最大年均沉降速率为136.5 mm/a,单年累计最大沉降量为220 mm。经同期CPI水准点观测结果校核,InSAR数据处理成果平均误差小于1 cm/a,相关系数到达70%以上。本文采用的分析方法能及时准确反映出线路方案穿行研究区内各处地面沉降变化,为线路方案规划和地质灾害整治提供有效合理参考。  相似文献   

16.
以南通市区2006年至2007年的SAR影像为数据源,利用PS InSAR技术对南通市区进行地面沉降研究.结果显示,南通市区存在多个沉降漏斗,但沉降量不大,大部分区域的线性沉降速率不超过11 mm/a.  相似文献   

17.
广州金沙洲是地面沉降危害较严重的地区之一,目前已形成7个沉降区域,沉降总面积约71×104m2,2007年起至2009年3月,是金沙洲地面沉降地质灾害的高发期,这一时期正是某高铁隧道在金沙洲施工阶段。据广州市地质调查院地下水动态监测及地面沉降监测结果,地下水的波动变化与地面沉降具有良好的对应关系,沉降区域沿区内北东向断裂带展布,地面沉降量等值线的展布方向与断裂走向大致一致。各沉降区域沉降中心大多位于断裂带或断裂的交汇部位等特点,据调查,金沙洲地面沉降与软土、正长斑岩风化土、砂土、断裂构造及地下水等因素有关。研究结果表明:复杂的地质环境条件是金沙洲发生地面沉降的客观因素,某高铁隧道施工大量抽排地下水是诱发和加剧地面沉降的主要因素。  相似文献   

18.
众所周知,引起天津市地面沉降的主要因素是地下流体的开采导致的地层压缩。实际上,自然因素引起的地面沉降在总沉降量中也占有一定比重。引起天津市地面沉降的自然因素包括构造运动、地震活动以及欠固结土的大面积分布。论述了天津市与地面沉降相关的地质环境背景,并对引起地面沉降的自然因素逐一分析。构造运动引起地面沉降量在沧县隆起、冀中坳陷构造单元为1.41~1.53mm/a,在黄骅坳陷为1.90~2.15mm/a,全市平均1.5mm/a;地震发生前后时间段内,是地震导致地面沉降量变化影响最大的时期;天津市欠固结土(第一海相层)分布区(外环线以东)软土引起平均沉降量1.0mm/a。该研究对地面沉降的防治工作起到一定的参考价值。  相似文献   

19.
柴龙飞  魏路  张震 《安徽地质》2023,(4):348-352
随着宿州市城市化进程不断推进,人类工程活动日趋频繁,地面沉降现象愈发显著。为探索沉降变化规律及其主导因素,本文以宿州市埇桥区为例,基于119景Sentinel-1A数据,利用SBAS-InSAR技术获取2019—2022年历年地面沉降的时空分布特征,并对埇桥区各沉降区的主要影响因素进行分析:(1)埇桥区各年平均地面形变速率为-2~4 mm/a,沉降主要分布在西二铺镇、宿州市经济开发区和南部各矿区;(2)城西水源地地面沉降速率为20~40 mm/a,沉降主要受地下水超量开采导致,经济开发区地面沉降速率为10~20 mm/a,沉降主要受人类工程活动影响;(3)埇桥区南部各矿区地面沉降主要受地下煤层开采影响,多年最大沉降速率为30~70 mm/a,芦岭煤矿沉降现象最为严重,多年最大沉降速率达68.1mm/a。研究结果可为埇桥区地面沉降的监测、预警和防治提供理论依据。  相似文献   

20.
利用SBAS-InSAR技术对济阳井田矿区40景C波段Sentinel-1A升轨数据进行处理,获取了2017年5月20日至2018年10月18日期间研究区内地面沉降的年平均沉降速率和累积沉降量。结果显示,研究区内年平均沉降速率最大达到320 mm/a,累积沉降量最大为447 mm。针对沉降较为严重区域选点进行特征点时序分析,结果表明,该位置的沉降量随着时间的推移持续增大,在研究时间段内没有减缓的趋势。矿区持续开采引发的地面沉降对周围地区也产生了一定影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号