首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
地面点云数据后处理及软件研制是制约地面三维激光扫描技术进一步发展的关键因素。本文集成Oracle存储、PCL模块点云算法、OpenGL三维显示技术,初步研发了一套集点云存储、处理、显示、查询功能于一体的地面点云处理系统。通过RIEGL VZ-400扫描的雕像测试点云,验证了本文提出的三种技术集成开发地面点云处理系统的可行性和系统功能的稳健性。为进一步研究地面点云数据处理系统提供有益的参考。  相似文献   

2.
天空地多源遥感数据的广义摄影测量学   总被引:1,自引:0,他引:1  
21世纪以来,随着云计算、大数据、物联网、机器学习等信息技术领域的飞速发展,人类已进入人工智能新时代.摄影测量学科也顺应新一轮科技革命的浪潮,快速发展为全新的广义摄影测量学,其载体平台、仪器设备、数据处理理论技术及应用领域都已发生显著变化,天空地一体化的多传感器多层次综合立体观测技术得到极大发展,全面进入综合智能摄影测...  相似文献   

3.
The concepts of “confining structure” and structure light are illuminated in this paper. A laser theodolite with three freedoms of rotation, which is aimed at “confining structure”, is developed. Various scanning modes and their mathematical models based on laser theodolite with three freedoms of rotation are discussed. According to the features of a huge object the structure light engineering surveying based on laser theodolite with three freedoms of rotation is determined as the main method in an actual application. The observation of four sound concrete posts and forced centering plates. Subsequently, it is transformed into the huge object coordinate system. The scanning mode with plumb plane is selected as the main mode in the whole work. And other assistant methods, such as close range photogrammetry and the method of using reflection sheet, are applied to the work of “scanning dead angle”. At last, a surveying accuracy estimation of this method is done and a surveying accuracy test is finished. It can be concluded that the structure light engineering surveying based on laser theodolite with three freedoms of rotation is considered to be an effective and applied method, and has many superiority to some other surveying methods in the work of surveying “confining structure”.  相似文献   

4.
This paper aims to compare models from terrestrial laser scanning (TLS), terrestrial photogrammetry (TP), and unmanned aerial vehicle photogrammetry (UAVP) surveys to evaluate their potential in cliff erosion monitoring. TLS has commonly been used to monitor cliff-face erosion (monitoring since 2010 in Normandy) because it guarantees results of high precision. Due to some uncertainties and limitations of TLS, TP and UAVP can be seen as alternative methods. First, the texture quality of the photogrammetry models is better than that of TLS which could be useful for analysis and interpretation. Second, a comparison between the TLS model and UAV or TP models shows that the mean error value is mainly from 0.013 to 0.03 m, which meets the precision requirements for monitoring cliff erosion by rock falls and debris falls. However, TP is more sensitive to roughness than UAVP, which increases the data standard deviation. Thus, UAVP appears to be more reliable in our study and provides a larger spatial coverage, enabling a larger cliff-face section to be monitored with a regular resolution. Nevertheless, the method remains dependent on the weather conditions and the number of operators is not reduced. Third, even though UAVP has more advantages than TP, the methods could be interchangeable when no pilot is available, when weather conditions are bad or when high reactivity is needed.  相似文献   

5.
Point cloud produced by using theoretically and practically different techniques is one of the most preferred data types in various engineering applications and projects. The advanced methods to obtain point cloud data in terrestrial studies are close range photogrammetry (CRP) and terrestrial laser scanning (TLS). In the TLS technique, separated from the CRP in terms of system structure, denser point cloud at certain intervals can be produced. However, point clouds can be produced with the help of photographs taken at appropriate conditions depending on the hardware and software technologies. Adequate quality photographs can be obtained by consumer grade digital cameras, and photogrammetric software widely used nowadays provides the generation of point cloud support. The tendency and the desire for the TLS are higher since it constitutes a new area of research. Moreover, it is believed that TLS takes the place of CRP, reviewed as antiquated. In this study that is conducted on rock surfaces located at Istanbul Technical University Ayazaga Campus, whether point cloud produced by means photographs can be used instead of point cloud obtained by laser scanner device is investigated. Study is worked on covers approximately area of 30 m?×?10 m. In order to compare the methods, 2D and 3D analyses as well as accuracy assessment were conducted. 2D analysis is areal-based whereas 3D analysis is volume-based. Analyses results showed that point clouds in both cases are similar to each other and can be used for similar other studies. Also, because the factors affecting the accuracy of the basic data and derived product for both methods are quite variable, it was concluded that it is not appropriate to make a choice regardless of the object of interest and the working conditions.  相似文献   

6.
无人机倾斜摄影像控布点方案研究及精度分析   总被引:1,自引:0,他引:1  
王朝辉  吴昊  孟将 《测绘通报》2021,(5):102-105,110
随着无人机装备及基于计算机的数字图像处理技术的快速发展,无人机在测绘行业的应用领域也越来越广泛。尤其在当前自然资源发展的新形势下,各地三维“一张图”的需求越来越迫切,无人机倾斜摄影测量技术因其方便灵活、操作简单得到迅猛发展。但无人机数据普遍存在高程精度低等问题,后续需要大量控制点改善精度。而现有的无人机低空摄影测量外业规范已不能适应无人机作业要求。因此,本文在兼顾效率及成果精度的基础上,探讨了不同像控布设方案对无人机倾斜摄影遥感系统空三精度及三维实景模型成果产生的影响,并进行相关试验和精度分析。  相似文献   

7.
近年来,TLS(地面三维激光扫描)技术越来越多地应用于地形测绘。本文简要介绍了TLS技术在国内外的发展,主要从五个方面总结我国利用TLS技术进行大比例尺地形测绘的应用研究现状,并探讨当前TLS地形测绘技术亟待解决的问题。  相似文献   

8.
针对古栈道遗址的精密测绘与三维建模的需求,该文采用无人机倾斜航空摄影测量的方法获取山崖航摄影像并生成点云,采用地面三维激光扫描的方法获取栈孔数据并生成点云,将两种点云数据利用最近点迭代算法相融合,获得融合点云并生成三角网模型,附上纹理贴图,便得到了遗址现状的三维数字模型,并利用该模型完成了虚拟复原。本次古栈道精密测绘及复原在国内尚属首次,为相关研究提供了新方法。  相似文献   

9.
航空摄影测量作为摄影测量学最重要的分支之一,近年来得到了长足的发展。倾斜航空摄影和无人机摄影测量等多种新作业模式的出现,给传统航空摄影测量带来新的挑战的同时也催生出了诸多新的解决方案。此外,人工智能领域计算机视觉技术和深度学习技术中的新理论、新方法不断融入航空摄影测量中,推动航空摄影测量向智能化、自动化方向发展。当代航空摄影测量学已经是多种传感器融合、多种数据采集方式结合、传统摄影测量和人工智能技术交叉的产物。三维重建是航空摄影测量的核心问题之一。本文阐述了当代航空摄影三维重建技术的发展趋势和存在的问题,着重从航空影像的同名连接点自动提取与匹配、区域网平差、密集匹配和单体化建模4个方面对当前的研究现状进行了总结讨论,给出了当前国内外主流的航空影像摄影测量处理框架。  相似文献   

10.
随着科学技术的快速发展,人们对于高性能计算技术的需求日益迫切,大规模数据并行处理的集群式系统实现技术开始逐步成熟。我国已对该项技术进行了深入研究,并将其应用到遥感影像处理技术当中,形成了集群式数字摄影测量系统Pixel Grid。相对于传统的摄影测量及遥感影像处理过程,集群式系统整合资源、集成技术,大大提高了数字摄影测量以及遥感影像数据处理乃至空间信息提取的处理效率。这也是目前遥感影像处理技术发展的重要方向之一。  相似文献   

11.
Research presented here explores the feasibility of leveraging vegetation data derived from airborne light detection and ranging (LiDAR) and terrestrial laser scanning (TLS) for visibility modeling. Using LiDAR and TLS datasets of a lodgepole pine (Pinus contorta) dominant ecosystem, tree canopy and trunk obstructions were isolated relevant to a discrete visibility beam in a short‐range line‐of‐sight model. Cumulative obstruction factors from vegetation were compared with reference visibility values from digital photographs along sightline paths. LiDAR‐derived tree factors were augmented with single‐scan TLS data for obstruction prediction. Good correlation between datasets was found up to 10 m from the terrestrial scanner, but fine scale visibility modeling was problematic at longer distances. Analysis of correlation and regression results reveal the influence of obstruction shadowing inherent to discrete LiDAR and TLS, potentially limiting the feasibility of modeling visibility over large areas with similar technology. However, the results support the potential for TLS‐derived subcanopy metrics for augmenting large amounts of aerial LiDAR data to significantly improve models of forest structure. Subtle LiDAR processing improvements, including more accurate tree delineation through higher point density aerial data, combined with better vegetation quantification processes for TLS data, will advance the feasibility and accuracy of data integration.  相似文献   

12.
Discriminating laser scanner data points belonging to ground from points above-ground (vegetation or buildings) is a key issue in research. Methods for filtering points into ground and non-ground classes have been widely studied mostly on datasets derived from airborne laser scanners, less so for terrestrial laser scanners. Recent developments in terrestrial laser sensors (longer ranges, faster acquisition and multiple return echoes) has aroused greater interest for surface modelling applications. The downside of TLS is that a typical dataset has high variability in point density, with evident side-effects on processing methods and CPU-time. In this work we use a scan dataset from a sensor which returns multiple target echoes, in this case providing more than 70 million points on our study site. The area presents low, medium and high vegetation, undergrowth with varying density, as well as bare ground with varying morphology (i.e. very steep slopes as well as flat areas). We test an integrated work-flow for defining a terrain and surface model (DTM and DSM) and successively for extracting information on vegetation density and height distribution on such a complex environment. Attention was given to efficiency and speed of processing. The method consists on a first step which subsets the original points to define ground candidates by taking into account the ordinal return number and the amplitude. A custom progressive morphological filter (opening operation) is applied next, on ground candidate points using a multidimensional grid to account for the fallout in point density as a function of distance from scanner. Vegetation density mapping over the area is then estimated using a weighted ratio of point counts in the tri-dimensional space over each cell. The overall result is a pipeline for processing TLS points clouds with minimal user interaction, producing a Digital Terrain Model (DTM), a Digital Surface Model (DSM), a vegetation density map and a derived Canopy Height Model (CHM). These products are of high importance for many applications ranging from forestry to hydrology and geomorphology.  相似文献   

13.
The aim of this study is to assess the impact of sensor size and resolution of different digital camera sensors upon the accuracy and precision of three dimensional data derived by photogrammetry. Kodak DC40, DCS420 and DCS460 digital cameras were used to produce digital images of retroreflective targets in a 4 m three dimensional test field. The image locations of the targeted points were automatically measured using an off the shelf image processing software package. Two different sub-pixel measurement approaches were examined: centre of gravity and weighted mean. From the automated sub-pixel measurement of the targeted points, results indicate that the high resolution DCS460 camera produces optimum results using either the weighted mean or centre of gravity approaches. Although this was perhaps expected, the far lower resolution DC40 camera performed better than was originally anticipated, suggesting potential for the cheaper DC40 for many applications.  相似文献   

14.
明代石碑高精度真实纹理三维建模应用   总被引:1,自引:1,他引:0  
为了解决精细化文物三维测绘精细建模的难题,本文利用手持式高精度三维激光扫描技术对栅栏墓园内的利玛窦墓碑、汤若望墓碑、南怀仁墓碑进行了高精度真实纹理三维激光扫描建模的研究,保证了文物模型的精度、精细度和完整性。手持式高精度三维激光扫描技术结合了三角测量、激光测量、近景摄影测量、自定位等技术手段,实现了对具有一定体量的复杂纹理文物的精细化测绘。本文通过对三角测量技术和近景摄影测量技术的基础原理进行分析,将两者的特点相结合,摸索出一套针对精细纹理和复杂雕刻的文物三维扫描技术流程。通过对手持式激光扫描技术的研究,验证了该技术对文物测绘的可行性和可靠性,为中尺度体量文物测绘总结了一套全新的技术流程,为今后探索针对不同体量的文物三维测绘,以及多种测绘技术相融合奠定了基础。  相似文献   

15.
田慧  周绍光  李浩 《测绘科学》2012,37(3):41-43
点云配准是三维激光扫描数据处理过程中不可或缺的一个环节,利用标靶进行配准是经典的手段之一,此类方案在单独扫描标靶的基础上进行半自动化配准。本文给出一种配准策略,利用中心投影原理将单站扫描的点云转换为深度影像,借助数字图像处理技术完成标靶的自动提取,拟合获得标靶中心点的坐标,并借用摄影测量学的知识实现点云的自动化配准。实验证明了本文方法的有效性。  相似文献   

16.
数字近景摄影测量在工业检测中的应用   总被引:2,自引:0,他引:2  
贾盛举  于晶涛 《测绘学报》2002,31(Z1):61-65
论述了利用数字相机与实时数字近景摄影测量技术相结合建立的工业零件检测系统的方法.该方法通过直接线性变换提供的概略初值,由理论严密的自检校光束法平差完成高精度的平差计算的数字近景摄影测量的处理的基本过程,并经后续处理,完成工业目标的自动检测.本系统利用目标点位的概略定位与最小二乘影像匹配相结合,达到目标点位的子像素级的精确配准和数字影像的自动量测技术.这种通过非接触方式建立的工业检测系统在精度、可靠性、灵活性、自动化程度、实时性等方面具有更大的优越性,能较好地满足高精度工业检测的要求.  相似文献   

17.
无人机在重大地质灾害应急调查中的应用   总被引:4,自引:0,他引:4  
传统的地质灾害应急调查受限于地形、天气等外界条件,不能快速全面地获取灾害的详细信息,而无人机具有灵活性强、时效性高和不受复杂地形影响等特点,在地质灾害应急调查中有独特的优势。本文以“6·24”新磨村滑坡和“10·11”白格滑坡为例,阐述了无人机数据获取及处理流程,重点介绍了无人机获取的数字地形产品在地质灾害精确描述、定性及定量分析中的应用。结果表明:无人机摄影测量技术为重大地质灾害应急调查提供了更加科学高效的现场影像采集和遥感成果处理及应用方案,为应急救灾工作的顺利实施及分析研判提供了重要数据支撑,科学有效地保证了现场施工救援人员的安全。  相似文献   

18.
工业现场近景数字摄影视觉精密测量   总被引:2,自引:0,他引:2  
研究了基于近景数字摄影原理的现场三维精密视觉测量方法,对其核心技术:数字成像器件模型及标定、高精度亚像素图像处理算法以及光学编码与精密测头技术进行了深入的讨论,给出了实现思路,为工业现场近景数字摄影精密测量系统的设计提供了理论依据。  相似文献   

19.
The Z/I Imaging Digital Camera System   总被引:1,自引:0,他引:1  
Market needs for airborne and spaceborne imagery used in photogrammetry and GIS applications are changing. Fundamental changes in sensors, platforms and applications are currently taking place. Most recently, new high resolution spaceborne sensors have become available. Besides classical photogrammetry, new thematic applications will drive the future image market. Savings in cost and time, together with the need for higher and reproducible radiometric resolution or spectral information will push forward the change from analogue to digital imagery. High resolution satellites will compete with airborne film-based photography and digital camera systems.
With the availability of a digital airborne camera, it is possible to completely close the digital chain from image acquisition to exploitation and data distribution. The key decision regarding the camera design in this case is whether a linear or area array sensor should be used. In view of the high geometric accuracy requirements in photogrammetry, Z/I Imaging has focused development on a digital camera based on an area sensor. An essential aspect of this decision was not only the aerial camera system, but also the entire photogrammetric process to the finished photographic or mapping product. If this point of view is adopted, it becomes clear that the development of a digital camera involves more than simply exchanging film for silicon. Aspects such as data transfer rates, in-flight data processing and storage, image archiving, georeferencing, colour fusion, calibration and preprocessing have the same influence on the economic assessment of a digital camera system. This paper describes current development activities and application aspects of a digital modular airborne camera system.  相似文献   

20.
随着摄影测量技术的成熟和人们对摄影测量产品应用的要求不断提高,真正射影像在工程与人们生活中扮演越来越重要的角色。生成高质量真正射影像的关键在于如何获取高精度的DSM。目前修正和改善DSM误差的方法普遍存在费力费时、精度缺乏保证及任意性等问题。本文针对DSM精度的修正问题提出了一种新的方法,即基于投影影像的概念,将空间点位在投影影像上的投影轨迹线作为几何约束条件,直接对现有DSM的高程进行修正的方法。通过获取高精度的DSM,进而生成更为精确的真正射影像。本文通过理论推导、单点高程和多点高程修正试验,验证了提出的新方法直观简单,适用性强,具有一定的实际应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号