首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The world famous Klondike goldfields are located in the unglaciated part of west-central Yukon, Canada. Since their discovery over 100 years ago, they have produced an estimated 311 tonnes of gold, primarily from bench and creek placers that are fluvial in origin and range from Pliocene to Holocene in age. Historically, the placers are classified into three levels of gravel with four main units. These include the high-level White Channel Gravel (Pliocene), presently the most important gold-bearing unit, which sits nonconformably on an erosional bedrock surface (i.e., the ‘White Channel strath’) and is overlain and interbedded with the glaciofluvial Klondike Gravel (Pliocene); the intermediate-level gravel (Pleistocene), the least important economically; and the low-level gravel (Pleistocene–Holocene), historically the most important gold-bearing unit, but it has been mined three or four times now. The goldfields originated from the weathering and erosion of early Cretaceous, discordant mesothermal quartz veins, and the light grey color of the matrix of the White Channel Gravel is due mainly to weathering and diagenetic alteration by groundwater flow. The concentration of placer gold is related to a hierarchy of physical scales: at the lithofacies scale (metres), bed roughness determined sites of gold deposition; at the element scale (tens of metres), gravel bars were preferentially enriched in gold; at the reach scale (hundreds of metres), stream gradient was an important factor; at the system scale (hundreds of km), braided river environments transported large amounts of gold; and at the sequence scale (thousands of km), economic placers formed initially in the high-level White Channel Gravel and later in the intermediate-level and low-level gravel. The White Channel strath is interpreted as an erosional ‘tectonic’ terrace that formed during isostatic uplift and under conditions of dynamic equilibrium. The high-level White Channel Gravel and Klondike Gravel are interpreted as a depositional ‘climatic’ terrace that formed during a reversal in the tectonically induced downcutting, which is attributed to the initial and most extensive of the pre-Reid glaciations (3 Ma) in the Yukon. The intermediate-level gravel is interpreted as minor erosional ‘complex response’ terraces that formed during static equilibrium when there were pauses in valley-floor degradation, which are attributed to the subsequent and less extensive pre-Reid glaciations. The low-level gravel formed also during valley-floor degradation and may represent a return to dynamic equilibrium conditions. Hence, the dominant forcing mechanisms controlling the evolution of the goldfields were isostatically compensated exhumation and climatic change related to the repeated glaciation of the Yukon. In addition, the lowering of baselevel from high-level, to intermediate-level and finally to low-level gravel was accompanied by a decrease in accommodation space (as indicated by a decrease in gravel thickness), which resulted in an increase in the concentration of the placer gold.  相似文献   

2.
Pollen analysis at two sites, correlated by the presence of the 190,000 yr-old Sheep Creek tephra, documents fluctuations in vegetation and climate consistent with this date and indicates that the records span marine oxygen isotope stage 7 and the stage 6/7 transition. Dawson Cut, near Fairbanks, Alaska, provides a 5.2-m-long pollen record of interglacial boreal forest succeeded by shrub tundra and then forest/tundra. Ash Bend, Stewart River, central Yukon, provides a 9.5-m-long record of interglacial boreal forest succeeded by forest/tundra, shrub tundra, and herbaceous tundra. The replacement of forest at both sites by more open or tundra vegetation indicates warm interglacial conditions giving way to cold and arid climate. It is not clear whether stage 7 was warmer than the present. The warm-cool-warm climate oscillation evident at both sites may correlate to Lake Baikal substages 7a, 7b, and 7c. Sheep Creek tephra fell on forest/tundra vegetation.  相似文献   

3.
《Quaternary Science Reviews》2005,24(10-11):1279-1286
Staircases of large-scale river terraces are striking features of the landscape in the Fen Wei Graben, adjacent to the Qinling orogenic belts, central China. Field investigations indicate that all five river terraces are composed of a basal channel gravel and an overlying, thick loess–palaeosol succession. As Chinese loess stratigraphy has been well studied, it favours age determination of these terraces and their correlation with the marine oxygen isotope stages. Our research indicates that the ages of the five terraces are approximately 2.6, 1.2, 0.9, 0.65, and 0.15 Ma, respectively. The formation of these river terraces within the Fen Wei Graben has been attributed to NW–SE crustal extension, associated with left lateral displacement between the North and South China Blocks, in response to the northward movement of India towards Asia since Cenozoic time. Thus, the stepped terraces in the Fen Wei Graben reflects elements of the India–Asia collision systems, in which terraces define episodes of accelerated northward movement of India towards Asia during the Quaternary.  相似文献   

4.
《Quaternary Science Reviews》2003,22(2-4):225-244
The Thebes Section in unglaciated southwestern Illinois contains a well preserved ∼500 kyr loess–paleosol sequence with four loesses and three interglacial soils. Various magnetic, mineralogical, and elemental properties were analyzed and compared over the thickness of soil sola. These proxies for soil development intensity have the following trend: Yarmouth Geosol>Sangamon Geosol>modern soil. Quartz/plagioclase, Zr/Sr, and TiO2/Na2O ratios were most sensitive to weathering. Frequency dependent magnetic susceptibility and anhysteretic remanent magnetization, greatest in A horizons, also correspond well with soil development intensity. Neoformed mixed-layered kaolinite/expandables, suggestive of a warm/humid climate, were detected in the Sangamon and Yarmouth soil sola. Clay illuviation in soils was among the least sensitive indicators of soil development. Differences in properties among interglacial soils are interpreted to primarily reflect soil development duration, with climatic effects being secondary. Assuming logarithmic decreases in weathering rates, the observed weathering in the Sangamon Geosol is consistent with 50 kyr of interglacial weathering (Oxygen Isotope Stage 5) compared to 10 kyr for the modern soil (Oxygen Isotope Stage 1). We propose that the Yarmouth Geosol in the central Midwest formed over 180 kyr of interglacial weathering (including oxygen isotope stages 7, 9, and 11).  相似文献   

5.
Aeolian sand sheets, which are characterized by low relief surfaces that lack dunes, are common in arid and semi‐arid climatic settings. The surface of an aeolian sand sheet can either be stable and subject to pedogenetic effects, or unstable such that it is affected by deflation or sedimentation. The Marília Formation (Late Cretaceous) may be interpreted as an ancient aeolian sand sheet area, where alternating phases of stability and instability of the accumulation surface have been recorded. Detailed field studies were carried out in several sections of the Marília Formation, where cyclic alternations of palaeosols and aeolian deposits were evident, using palaeopedological and facies analysis methods, supported in the laboratory by the analysis of rock samples, cut and polished in slabs, thin sections, scanning electron microscope images and X‐ray diffraction data from the clay minerals. The deposits comprise three lithofacies that, in order of abundance, are characterized by: (i) translatent wind‐ripple strata; (ii) flood deposits; and (iii) ephemeral river channel deposits. Palaeosols constitute, on average, 65% of the vertical succession. Three types of palaeosols (pedotypes) are recognized: (i) Aridisols; (ii) Entisols; and (iii) Vertisols. Erosional surfaces due to aeolian deflation divide the top of the palaeosol profiles from the overlying aeolian deposits. The palaeoenvironmental interpretation of the deposits and the palaeosols allows the depositional system of the Marília Formation to be defined as a flat area, dominated by aeolian sedimentation, with subordinate ephemeral river sedimentation, and characterized by a dry climatic setting with occasional rainfall. The climate is the main forcing factor controlling the alternation between episodes of active sedimentation and periods of palaeosol development. A climate‐controlled model is proposed in which: (i) the palaeosols are indicative of a stable surface that is developed during the more humid climatic phases; and (ii) the erosional surfaces and the overlying aeolian sediments attest to periods of deflation and subsequent sedimentation, thereby increasing the availability of sediment during the drier climatic phases. The ephemeral fluvial deposits mark the more humid climatic conditions and contribute to the lagged sediment influx caused during the drier periods by the erosion of previously stored sediment.  相似文献   

6.
We synthesize a new fluvial terrace chronostratigraphy of the Bidente and Musone Rivers cast within a broader European framework, which forms the basis of a terrace genesis and river incision model for the northern Apennines, Italy. Our model, supported by terrace long profiles, correlation to Po foreland sediments, 15 new radiocarbon dates, and published numeric and relative stratigraphic ages, highlights how drainage basin substrate drives concurrent formation of strath terraces in the Bidente basin and fill terraces in the Musone basin. Quaternary climate change paces the formative geomorphic processes through unsteady discharges of water and sediment. In the weathering-limited setting represented by the Bidente basin, siliciclastic detritus carves broad strath surfaces during glacial climates that are preserved as terraces as the river incises during the transition to an interglacial climate. In contrast, the transport-limited and carbonate detritus dominated Musone basin sees valleys deeply buried by aggradation during glacial climates followed by river incision during the transition to an interglacial climate. Incision of these rivers over the past ~1 million years has been both unsteady and non-uniform. These and all Po-Adriatic draining rivers are proximal to a base level defined by mean sea level and have little room for increasing their longitudinal profile concavities through incision, particularly in their lower reaches despite periodic glacio-eustatic drawdowns. As a result, the observed incision is best explained by rock uplift associated with active local fault or fold growth embedded in the actively thickening and uplifting Apennine foreland.  相似文献   

7.
A multi‐disciplinary approach was followed to investigate two thick palaeosol strata that alternate with wind‐blown dominated deposits developed along the Alghero coast (North‐west Sardinia, Italy). Optically stimulated luminescence ages reveal that both palaeosols were developed during cooler drier periods: the first one at around 70 ka Marine Isotope Stage 4 and the latter around 50 ka (Marine Isotope Stage 3). In contrast, the pedological features indicate that the palaeosols underwent heavy weathering processes under warm humid to sub‐humid conditions, characteristic of the Sardinian climate during the last interglacial stage (Marine Isotope Stage 5e). To reconcile this apparent data discrepancy, a range of sedimentological and pedological analyses were conducted. These analyses reveal that the palaeosols possess a complex history, with accumulation and weathering occurring during Marine Isotope Stage 5e, and erosion, colluviation and final deposition taking place during the following cold stages. Thus, even if these reddish palaeosols were last formed during the glacial period, the sediments building up these strata probably record the climate of the last interglacial stage (Marine Isotope Stage 5e). Trace element and X‐ray diffraction analyses, together with scanning electron microscope images, reveal the presence of Saharan dust in the parent material of the palaeosols. However, no evidence of any far‐travelled African dust has been observed in the Marine Isotope Stage 4–3 aeolian deposits. It is possible to conclude that in the West Mediterranean islands, Saharan dust input, even if of modest magnitude, is preserved preferentially in soils accumulated and weathered during interglacial stages.  相似文献   

8.
Geomorphological investigations in the catchment area of the Baydragiyn river along the southern slope of the Khangay and in the Valley of the Gobi Lakes in western Mongolia provide evidence for Late Quaternary glaciations and lake‐level changes. Thermoluminescence (TL) and infrared optically stimulated luminescence (IRSL) dating of aeolian and colluvial sediments from the central Khangay place the sediments that overlie fluvial and glaciofluvial terraces in the Holocene. An age of 21 ka is determined for a sand deposit overlying the terrace that is related to the last glacial ice‐margin. Lacustrine sediments from higher beach lines in the Valley of the Gobi Lakes provide evidence for a slightly more humid period around 1.5 ka, and a larger extent of the lakes in the Early Holocene at about 8.5 ka, as also reported from other parts of Central Asia. Remnants of lacustrine sediments buried by alluvial gravel, and indicating a huge palaeolake in the basin of the Orog Nuur, however, date to the early stage of the last glaciation around 70 ka. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
The technique of optically stimulated luminescence (OSL) dating applied to fluvial sediments provided a geochronological framework of river terrace formation in the middle part of the Dunajec River basin – a reference area for studies of evolution of river valleys in the northern part of the Carpathians (West Carpathians). Fluvial sediments at 18–90 m above valley bottoms were dated in the valleys of the Dunajec River and one of its tributaries. The resulting ages range from 158.9±8.3 to 12.2±1.3 ka. This indicates that some of the terrace sediments were deposited much later than previously assumed on the grounds of a combined morphostratigraphical and climatostratigraphical approach. The OSL‐based chronostratigraphy of terrace formation consists of seven separate phases of fluvial aggradation, separated by periods of incision and lateral erosion. Some of the ages determined correspond to warm stages of the Pleistocene – Marine Isotope Stage 3 (MIS 3) and MIS 5 – demonstrating that some terraces were formed during interstadial or interglacial periods. The results provide a key for evaluating rates of neotectonic uplift, allowing us to decipher the response of a fluvial system to climate change within the context of the glacial–interglacial scheme.  相似文献   

10.
青藏高原边缘河流阶地的成因一直是研究的热点。对湟水流域二级阶地形成时的孢粉分析结果表明:该时期湟水流域存在明显的垂直植被带且结构简单,山地高处生长着以云杉为主的森林,谷地则生长以蒿属、藜科为主要类型的草本植被。同时结合该时期相邻地区的孢粉资料并和现代植被特征比较,湟水流域二级阶地的植被显示出冰期的植被特征,阶地冲积物也是在冰期堆积的,河流可能在间冰期下切。气候变化在阶地形成过程中可能有一定的作用。  相似文献   

11.
在西宁市区开展的钻探工作,获得了河谷平原区第四系的分布及沉积特征。通过对沉积厚度最大部位的2个钻孔岩芯的地层岩性、年代测试、孢粉组合及粒度分析等,探讨了西宁河谷平原区晚第四纪沉积与环境的关系。认为现今西宁市河谷平原内的主体沉积——低阶地沉积及上覆黄土堆积主要是末次间冰期旋回形成,在暖湿气候条件下沉积河流相砂砾石层,在干冷气候期接受风成黄土堆积,推测T3阶地形成于距今7.4万年前后气候由暖湿向干冷的过渡时期。  相似文献   

12.
《Quaternary Science Reviews》2007,26(17-18):2265-2280
Well-preserved loess deposits are found on the foothills of mountains along the middle reaches of the Yarlung Zangbo River in southern Tibet. Optically stimulated luminescence (OSL) dating is used to determine loess ages by applying the single-aliquot regeneration technique. Geochemical, mineralogical, and granulometric measurements were carried out to allow a comparison between loess from Tibet and the Chinese Loess Plateau. Our results demonstrate that (i) the loess deposits have a basal age of 13–11 ka, suggesting they accumulated after the last deglaciation, (ii) loess in southern Tibet has a “glacial” origin, resulting from eolian sorting of glaciofluvial outwash deposits from braided river channels or alluvial fans by local near-surface winds, and (iii) the present loess in the interior of Tibet has accumulated since the last deglaciation when increased monsoonal circulation provided an increased vegetation cover that was sufficient for trapping eolian silt. The lack of full-glacial loess is either due to minimal vegetation cover or possibly due to the erosion of loess as glaciofluvial outwash during the beginning of each interglacial. Such processes would have been repeated during each glacial–interglacial cycle of the Quaternary.  相似文献   

13.
Previous work has presented contrasting views of the last glaciation on Jameson Land, central East Greenland, and still there is debate about whether the area was: (i) ice-free, (ii) covered with a local non-erosive ice cap(s), or (iii) overridden by the Greenland Ice Sheet during the Last Glacial Maximum (LGM). Here, we use cosmogenic exposure ages from erratics to reconcile these contrasting views. A total of 43 erratics resting on weathered sandstone and on sediment-covered surfaces were sampled from four areas on interior Jameson Land; they give 10Be ages between 10.9 and 269.1 kyr. Eight erratics on weathered sandstone and till-covered surfaces cluster around ∼70 kyr, whereas 10Be ages from erratics on glaciofluvial landforms are substantially younger and range between 10.9 and 47.2 kyr. Deflation is thought to be an important process on the sediment-covered surfaces and the youngest exposure ages are suggested to result from exhumation. The older (>70 kyr) samples have discordant 26Al and 10Be data and are interpreted to have been deposited by the Greenland Ice Sheet several glacial cycles ago. The younger exposure ages (≤70 kyr) are interpreted to represent deposition by the ice sheet during the Late Saalian and by an advance from the local Liverpool Land ice cap in the Early Weichselian. The exposure ages younger than Saalian are explained by periods of shielding by non-erosive ice during the Weichselian glaciation. Our work supports previous studies in that the Saalian Ice Sheet advance was the last to deposit thick sediment sequences and western erratics on interior Jameson Land. However, instead of Jameson Land being ice-free throughout the Weichselian, we document that local ice with limited erosion potential covered and shielded large areas for substantial periods of the last glacial cycle.  相似文献   

14.
Glaciotectonized sediments and palaeosol at Great Sampford, western Suffolk, England are reconstructed to their original positions in order to determine the form of the original land surface and the associated soil development. The restored stratigraphy consists of Early Pleistocene Kesgrave Sands and Gravels which were deposited by the 'pre-glacial' river Thames, with the Early-Middle Pleistocene Valley Farm Soil developed on a terrace surface. These units are overlain by Sampford Deformation Till and Lowestoft Till, which were formed during the Middle Pleistocene Anglian glaciation. The micromorphological features of the reconstructed soil are interpreted in terms of three climatic cycles, each comprising a period of temperate climate soil formation followed by cold climate soil disruption. The final stage of disruption is associated with the periglacial climate that preceded Anglian glacierization. This pedological reconstruction is the most complex yet recognized from British Early and Middle Pleistocene palaeosols and provides an insight into major climatic oscillations prior to the Anglian Glaciation. The surface upon which the soil developed is one of the oldest terraces of the 'pre-glacial' River Thames that were formed when this river flowed northwards through East Anglia.  相似文献   

15.
Gao, C. & Boreham, S. 2010: Ipswichian (Eemian) floodplain deposits and terrace stratigraphy in the lower Great Ouse and Cam valleys, southern England, UK. Boreas, 10.1111/j.1502‐3885.2010.00191.x. ISSN 0300‐9483. Thick argillaceous deposits named the Mannings Farm Beds recently uncovered in the third terrace at Mannings Farm near Willingham, Cambridgeshire contain a pollen sequence covering the transitions from Ipswichian/Eemian substages I to II and II to III, when oak and hornbeam expanded, respectively. This is the longest record hitherto obtained in Britain, providing important insight into the major forest successions in this temperate stage. The frequent occurrence of Ipswichian deposits in the third terrace suggests the development of an extensive floodplain on the valley bottom, similar to the case for the present‐day lower Great Ouse and Cam. The Mannings Farm Beds testify to a complete interglacial sequence emplaced between cold‐climate gravels that was directly associated with the terrace development. The third terrace developed during the Ipswichian and the preceding and succeeding cold stages. Major river downcutting, which shaped the third terrace, occurred during the Early Devensian/Weichselian. Previously reported interglacial fossils from this terrace that are inconsistent with an Ipswichian affinity are probably reworked material derived from pre‐Ipswichian interglacial deposits, or their significance as biostratigraphical indicators needs to be confirmed. The second and first terraces developed from the late Early Devensian onwards. Ipswichian deposits filling flood‐scoured deep channels in bedrock are preserved locally below these low terraces.  相似文献   

16.
Little is known about controls on river avulsion at geological time scales longer than 104 years, primarily because it is difficult to link observed changes in alluvial architecture to well‐defined allogenic mechanisms and to disentangle allogenic from autogenic processes. Recognition of Milankovitch‐sale orbital forcing in alluvial stratigraphy would provide unprecedented age control in terrestrial deposits, and also exploit models of allogenic forcing enabling more rigorous testing of allocyclic and autocyclic controls. The Willwood Formation of the Bighorn Basin is a lower Eocene fluvial unit distinctive for its thick sequence of laterally extensive lithological cycles on a scale of 4 to 10 m. Intervals of red palaeosols that formed on overbank mudstones are related to periods of relative channel stability when gradients between channel belts and floodplains were low. The intervening drab, heterolithic intervals with weak palaeosol development are attributed to episodes of channel avulsion that occurred when channels became super‐elevated above the floodplain. In the Deer Creek Amphitheater section in the McCullough Peaks area, these overbank and avulsion deposits alternate with a dominant cycle thickness of ca 7·1 m. Using integrated stratigraphic age constraints, this cyclicity has an estimated period of ca 21·6 kyr, which is in the range of the period of precession climate cycles in the early Eocene. Previous analyses of three older and younger sections in the Bighorn Basin showed a similar 7 to 8 m spacing of red palaeosol clusters with an estimated duration close to the precession period. Intervals of floodplain stability alternating with episodes of large‐scale reorganization of the fluvial system could be entirely autogenic; however, the remarkable regularity and the match in time scales documented here indicate that these alternations were probably paced by allogenic, astronomically forced climate change.  相似文献   

17.
陈孝红  程龙 《地质学报》2008,82(2):269-280
构造运动和气候变化是制约内陆地区河流阶地发育的两个关键因素,而不同地区的河流对它们的响应方式多种多样.研究区海子山位于青藏高原东部的沙鲁里山中段,在第四纪期间经历了大幅度构造抬升及第四纪冰川作用.海子山北缘牙着库河谷保留着6级河流阶地,南缘稻城河谷完好地保留着第四纪冰川作用遗迹.本研究运用电子自旋共振技术对牙着库4级高阶地(第3~第6级)的砾石层及稻城河谷的第四纪冰川沉积物进行了测年,并对这4级阶地的形成过程进行了分析.结果表明,牙着库3~6级阶地基座及相应的砾石层均形成于冰消期,分别与深海氧同位素2、6、12、16阶段晚期相对应.待气候进一步变暖而逐渐进入间冰期,海子山冰川消融殆尽,下伏地壳负荷锐减,构造抬升效应的释放结合冰川均衡抬升使得牙着库河谷梯度增大,而同期的河流沉积物通量较小,结果导致流水切割前期加积的沉积物及其下伏基座形成一级新的河流阶地.牙着库河谷自深海氧同位素16阶段后期以来的平均下切速率为0.43 mm/a左右,小于海子山的平均抬升速率2 mm/a,与"河谷下切速率不大于山地抬升速率"一致.  相似文献   

18.
The competing roles of bedrock uplift and climatic change in the formation of fluvial terraces remain uncertain. Most of recent studies have attributed terrace formation to climatic changes and held that, even in tectonically active settings, climate variations control cycles of terrace planation and abandonment. Based on field investigations of loess-paleosol sequences, magnetostratigraphy and optically stimulated luminescence (OSL) dating, we develop a new chronology for a spectacular flight of terraces along the Yellow River near Lanzhou, China over past 1.24 Ma. All the terraces are strikingly similar in that they have several meters of paleosol developed directly above fluvial deposits on the terrace treads, suggesting that the abandonment of each terrace due to river incision occurs during the transition from glacial to interglacial climates. However, the ages of terraces cluster in two relatively short time periods (1.24–0.86 Ma and 0.13 Ma – present). During the intervening time between 0.86 Ma and 0.13 Ma, terraces either did not form or were not preserved. We suggest that this record indicates that rock uplift rates varied through time and influenced terrace formation/preservation. Thus, our results demonstrate the utility of deep chronologic records from fluvial terraces for deconvolving the effects of tectonics and climate on fluvial incision.  相似文献   

19.
In the summer of 1999, the Maritimes and Northeast Pipeline Company excavated a 3-m-deep trench across northern Nova Scotia exposing a continuous transect of surficial deposits along a 237-km corridor. A Lateglacial palaeosol with preserved A horizon (peat and wood) buried under 2-10 m of surface till consisted mainly of herbaceous plant material with few large wood fragments. Large pieces of wood from two sites yielded conventional radiocarbon ages of 10.9 14C kyr BP (GSC-6435) and 10.8 14C kyr BP (GSC-6419). Previous to these finds, only a few localities were known to reveal till overlying peat, so the extent of Younger Dryas (YD) glaciers could not be clearly established. Glacial flow lines indicated by fabric and fluting of the YD surface till sheet in northern Nova Scotia and ice-marginal deposits imply an ice cap centred over eastern P.E.I. and the southern Gulf of St. Lawrence. This glacier also dammed a series of glacial lakes against the highland-rimmed west coast of Cape Breton Island. Glaciers developed and advanced during the YD in the uplands and offshore shelf areas from small remnants of Late Wisconsinan ice. Renewed ice growth was enabled by increased precipitation and local cooling in the Gulf of St. Lawrence due to deflection of the jet stream and expanded sea-ice cover in the North Atlantic. The YD may provide an analogy to glacier development in Maritime Canada during the interglacial/glacial transition.  相似文献   

20.
Although substantial work has been done on the pre-glacial terraces of East Anglia, very little systematic work has been done to understand the origin of river terraces in East Anglia that have formed since ice last covered the region. This paper records the results of studies of exposures and borehole records in ‘classical’ Quaternary terrace landforms that are considered to have formed since the Anglian (MIS 12) Glaciation, in the middle Waveney Valley. These features have been examined in terms of their morphological and sedimentological properties, in order to provide a detailed record of their form and composition, understand their processes of formation, and identify their stratigraphical status. The results show that the main body of the highest terrace (Homersfield Terrace, Terrace 3) is not composed of river sediments, but of shallow marine sediments, and is a remnant of early Middle Pleistocene Wroxham Crag. River sediments, in the form of Anglian age (MIS 12) glaciofluvial Aldeby Sands and Gravels also exist in the area as a channel fill, cut through the Wroxham Crag, and reflect outwash erosion and sedimentation from a relatively proximal ice margin to the west. The results mean that the interpretations previously presented for the terrace landforms of the middle Waveney valley are not applicable. The issue of why the terrace stratigraphy, hitherto identified in East Anglia cannot be related to that for the River Thames to the south and the rivers of Midland England to the west, still requires further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号