首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
新构造运动的间歇性上升和气候的冷暖干湿波动是雷波地区金沙江河谷演化的主要影响因素,且两者间具有明显的耦合性,与河谷区的滑坡、岩溶洞穴发育关系密切相关。暖湿期发育滑坡和岩溶洞穴,干冷期河谷下切,形成陡坎及洞穴内的地下河流相堆积。频繁的间歇性新构造上升运动及气候冷暖波动导致多期滑坡和多层洞穴发育,但制约了洞穴规模的发展。  相似文献   

2.
河流阶地作为河谷中常见地貌, 其堆积物特征对气候变化过程研究具有重要的意义.通过对循化黄河Ⅲ级阶地剖面沉积特征、粒度、磁化率、孢粉以及光释光测年的研究, 初步厘定循化黄河Ⅲ级阶地形成时代为75 ka.循化盆地晚更新世气候演化可以大致划分为6个阶段: 120~114 ka, 气候暖湿; 114~105 ka, 气候较为干冷; 105~98 ka, 气候较暖湿; 98~85 ka, 气候转为温凉; 85~75 ka, 气候暖湿; 75~63 ka, 气候干冷.这6个阶段分别与MIS5e-4段相对应.   相似文献   

3.
苏南及沿江地区柏山组,下蜀组的时代及成因   总被引:10,自引:3,他引:7  
邵家骥 《江苏地质》1999,23(1):10-16
柏山组与下蜀组是江苏西南部丘陵山区的两个岩石地层单位,也是第四纪特定气候环境下形成的两类土状堆积。经与平原区第四纪地层对比,柏山组的层位与平原区的海门组上段至启东组下段相当,沉积时代为早更新世晚期到中更新世早期;下蜀组与平原区的启东组至湖组相当。沉积时代为中更新世晚期至晚更新世。柏山组网纹红土是早期干凉气候环境下堆积的黄土,经后期强烈湿热、氧化及流水冲刷后的产物,成因以洪冲积为主;下蜀组黄土是干凉气候环境下的产物,是风尘物质经流水改造后的产物,具多成因特点。  相似文献   

4.
青海西宁厚层黄土的发现及其意义   总被引:3,自引:0,他引:3  
古地磁研究表明,西宁大墩岭黄土剖面是距今1.2Ma以来形成的,它记录有B/M界线,哈拉米洛事件(J)和黄土剖面中很少发现的布莱克事件(B_1)。西宁地区的黄土以其厚度大(达261m)、粒度粗、古土壤分层多、古土壤厚度在整个剖面所占比例小为其特点,表明西宁距离黄土的物源区近、气候干冷、粉尘堆积速度快,详细记录了距今1.2Ma年以来青藏高原环境变迁和气候变化信息。其中L_2、L_9、L_(15)是距今0.155、0.79,1.10 Ma三次最为干冷时期的产物,与青藏高原的三次最大规模冰期极盛时期相对应。  相似文献   

5.
G.Kukla 《第四纪研究》1992,12(2):184-187
在过去的几年间,通过对一些连续沉积如湖泊、近岸海域、冰芯及黄土-古土壤系列的研究,我们在理解第四纪气候变化方面已取得了很大的进展。地质记录表明,全球气候至少在4—3Ma以前即开始波动,逐渐向现代气候格局转化。在2.5或2.4MaB.P.前后,有一个全球性的干冷期,这个显著的干冷期后在世界各地均表现为更新世气候格局。因  相似文献   

6.
郧县前坊村剖面黄土-古土壤序列风化成壤及古气候研究   总被引:2,自引:0,他引:2  
秦岭作为我国南方和北方地理、气候、自然环境的天然分界线,并当作是黄土高原的南屏障。汉江上游谷地地区位于秦岭南侧,属于北亚热带气候区域,受季风气候活动影响强烈。为了探讨该地区在亚热带气候背景下,风成黄土成壤改造对气候变化的响应机制,通过对汉江上游谷地前坊村(QFC)剖面磁化率、烧失量、粒度、Rb/Sr等理化性质进行研究。结果表明:①末次冰期以来沙尘暴很有可能越过秦岭在其南侧堆积,黄土-古土壤剖面地层序列从上到下依次为:MS-L0-S0-Lt-L1-AD;这些沉积物完整记录了一级阶地上晚更新世气候变化信息,地层单元受到各个时期不同程度成壤强度的改造。②前坊村剖面中,理化性质在不同地层单元有显著差异。例如磁化率、烧失量、Rb/Sr指标平均含量的高值出现在古土壤层中,低值出现在黄土层;而Zr/Rb含量变化正好相反;这些理化性质表明,在古土壤发育期,水热条件进入最适宜期,沉积物的风化成壤作用显著;在黄土堆积期,气候寒冷干燥,主要以粉尘堆积为主,沉积物的风化成壤作用较弱。③秦岭南侧北亚热带汉江上游前坊村一级阶地剖面化学风化强度变化揭示了黄土-古土壤环境气候变化的规律:末次冰期以来(大约18.0~11.5 ka B.P.),气候干冷,沙尘暴频繁出现,沉积物以黄土堆积为主,成壤作用微弱,形成马兰黄土(L1);全新世早期(约11.5~8.5 ka B.P.),气候由干冷向暖湿方向转变,但主要以干冷为主,形成过渡层(Lt);在全新世大暖期(8.5~3.1 ka B.P.),气候条件达到最优阶段,水热配合较好,生物活动活跃,成壤作用十分显著,发育了古土壤S0;到了全新世晚期以来(3.1 ka B.P.)气候又由暖湿向干冷方向转变,成壤作用明显减弱,沙尘暴出现较为频繁,形成了以黄土堆积为主的全新世黄土(L0)。现代表土层(MS)是在(1.5 ka B.P.)以来气候转暖,加之人类长期农业耕作扰动,在全新世黄土L0顶部叠加而形成的。  相似文献   

7.
为补充和印证其他气候代用指标揭示的东北地区始新世古气候的变化规律和变化细节,利用时频、时序分析以及降噪滤波等方法分析依兰始新世沉积碎屑组分中长石/石英和单晶石英/多晶石英的旋回性及细节特征揭示其气候变化过程。结果表明:依兰地区始新世存在暖湿、较暖湿、较干冷和干冷4种气候状态;伊普利斯期气候由初期的干冷逐渐变得暖湿,在卢泰特期开始达到始新世最暖湿的状态,卢泰特期晚期向干冷变化,到巴顿期早期达到最干冷状态,之后气候波动回暖;长石/石英和单晶石英/多晶石英所指示的结果与其他气候代用指标推断的变化趋势存在较好的一致性;长石/石英和单晶石英/多晶石英整体呈镜像关系,镜像程度越高,推断结果越同步,则推断结果越可信;其中长石/石英整体上对暖湿过程敏感,单晶石英/多晶石英对干冷过程敏感。  相似文献   

8.
淄博地区上新世巴漏河组的发现及意义   总被引:1,自引:0,他引:1  
上新世巴漏河组在淄博地区的发现填补了该地区上新统的空白。阐述了巴漏河组的空间展布特征及其对新构造运动的指示意义 ;综合运用沉积岩相分析、孢粉分析、岩石化学分析等方法对巴漏河组剖面进行了系统研究 ,分析了其成因及形成时代 ,重建了淄博地区上新世晚期的沉积、生态及气候等古地理环境。认为巴漏河组是在上新世晚期由河流搬运堆积形成 ,在其沉积过程中 ,淄博地区的植被由针阔混交林演替为以松为主的针叶林 ,气候由暖湿的暖温带气候向冷湿气候变迁 ,并呈现出进一步干冷化的趋势  相似文献   

9.
青海湖地区冰消期以来气候变化的黄土记录   总被引:3,自引:0,他引:3  
青海湖周围堆积着很多黄土和风沙沉积,这些风成沉积序列是过去气候变化的良好记录.相对于湖泊沉积,这些沉积物受到的研究较为薄弱.对青海湖南岸的黄土堆积进行了光释光年代学、磁化率、Fe/Mg值、粒度和有机质含量等气候替代性指标测量.在具有绝对年代标尺控制的基础上,结合气候替代性指标变化特征的分析,表明冰消期以来青海湖地区的古气候经历了多次的冷暖和干湿变化过程:14~9 ka间气候前期相对冷干,后期转为凉干,其中可能在11 ka左右存在一次暖湿事件;9~2.5 ka间气候呈暖湿状态;2.5 ka以后的地层扰动较大.黄土和湖泊沉积记录的环境变化过程具有可比性.  相似文献   

10.
中国西北地区晚更新世以来环境变迁模式   总被引:77,自引:11,他引:77  
李吉均 《第四纪研究》1990,10(3):197-204
中国西北地区晚更新世以来环境变迁有两种模式,新疆地区服从西风带的一般规律,冰期与雨期同步,即冰川前进与气候冷湿、湖面上升的时期相当。甘肃、青海等地主要受季风影响,冰期干冷、黄土堆积盛行,内陆湖面大幅度降低。另外,在末次冰期的间冰段中气候冷湿,内陆湖面普遍升高;而在全新世的高温期则夏季风十分强大,包括新疆和藏北高原气候均以暖湿为特色。  相似文献   

11.
渭河下游咸阳-草滩段河谷沉积对构造活动的响应   总被引:3,自引:3,他引:0       下载免费PDF全文
渭河下游咸阳-草滩段河道位于西安凹陷向临潼隆起的过渡区,发育河漫滩和T1~T3阶地,渭河断裂隐伏于河道北岸。文章对渭河北岸河谷地貌和地层剖面进行了观测和年代学样品的测试,并对跨渭河断裂的系列钻探中的2个深150m的钻孔岩芯进行了年代学样品测试和地层对比。河谷区地层年代测定表明,渭河北岸在距今约10万年前为风成黄土堆积环境,大致在2.5万年以来开始了最新一期的河道沉积。钻孔岩芯揭露的多个黄土-河流冲积的沉积旋回显示第四纪时期渭河河道经历了多次的南北向摆动。受临潼隆起的影响,咸阳-草滩段晚第四纪河谷沉积自西向东厚度明显减薄。通过对渭河断裂两侧钻孔柱状图的对比,认为渭河断裂0.04~0.05m/ka垂向差异运动速率低于河流0.15~0.24m/ka沉积速率,是渭河断裂隐伏于河谷中的原因。  相似文献   

12.
刘运明 《古地理学报》2018,20(3):477-488
对黄河晋陕峡谷河曲、黑峪口、延水关和壶口等4个地区进行了详细的野外考察。河曲地区共发现3级河流阶地,更高的则为唐县期宽谷;唐县期宽谷的海拔高度约1000m(拔河高度150m),而3级河流阶地的拔河高度分别约为110m、80m和12m。黑峪口地区也存在唐县期宽谷,宽谷之下发育5级河流阶地,唐县期宽谷西高东低,海拔高度位于970m和940m之间,5级河流阶地的拔河高度分别约为130m,80m、50m、12m和4m。延水关地区共发现6级河流阶地,全部为第四纪期间形成,6级河流阶地的拔河高度分别为180m、130m、95m、50m、20m和4m。壶口地区共存在8级阶地,也全部为第四纪期间的阶地,阶地的拔河高度分别约为260m、210m、180m、120m、80m、60m、35m和15m。对壶口最高阶地进行了地层学研究,发现这一阶地上覆厚度约110m的黄土地层,黄土层的最底部为L13,古地磁研究结果和古土壤断代都指示了这一阶地的形成时间在距今1.1Ma左右。综合晋陕峡谷地区现有的研究结果认为,3.3Ma之前,鄂尔多斯地块内部构造极为稳定,发育了唐县期夷平面,古黄河在此夷平面上主要以侧蚀拓宽为主,下蚀极其微弱;3.3-1.1Ma,鄂尔多斯地块的构造稳定可能被打破,黄河小幅度下切;而1.1Ma以来,受鄂尔多斯地块快速抬升的影响,黄河发生剧烈下切,1.1 Ma阶地和晋陕峡谷的主体在这一时期形成。  相似文献   

13.
对郧县—白河段汉江Ⅰ级河流阶地上风成黄土的沉积学、理化性质、地球化学和年代学进行了系统研究。结果表明,汉江Ⅰ河流阶的形成不晚于25 ka BP;黄土具有马兰黄土(L1)→过渡黄土(Lt)→古土壤(S0)→全新世黄土(L0)→表土(TS)的地层序列,与渭河谷地的黄土地层序列完全可比;25~11.5 ka BP,冬季风强盛,气候冷干,从11.5 ka BP开始,冬季风逐渐减弱,气候开始向暖湿方向逐步转化,从8.5 ka BP开始,夏季风达到了末次冰期结束后的鼎盛时期,3.1 ka BP前后,东亚季风格局发生变化,夏季风减弱,重新进入一个相对干冷的时期,而人类活动对地表的影响形成了表土;汉江上游谷地黄土记录的末次冰期后季风逐渐加强、中全新世季风强盛、随后季风衰退和气候变干的夏季风演变模式与渭河谷地黄土的记录高度一致,与邻区石笋和泥炭记录的季风变化趋势也有良好的可比性,但与石笋/泥炭记录的夏季风强盛期的起始时间(9.3~4.2 ka BP)并不完全一致。  相似文献   

14.
The technique of optically stimulated luminescence (OSL) dating applied to fluvial sediments provided a geochronological framework of river terrace formation in the middle part of the Dunajec River basin – a reference area for studies of evolution of river valleys in the northern part of the Carpathians (West Carpathians). Fluvial sediments at 18–90 m above valley bottoms were dated in the valleys of the Dunajec River and one of its tributaries. The resulting ages range from 158.9±8.3 to 12.2±1.3 ka. This indicates that some of the terrace sediments were deposited much later than previously assumed on the grounds of a combined morphostratigraphical and climatostratigraphical approach. The OSL‐based chronostratigraphy of terrace formation consists of seven separate phases of fluvial aggradation, separated by periods of incision and lateral erosion. Some of the ages determined correspond to warm stages of the Pleistocene – Marine Isotope Stage 3 (MIS 3) and MIS 5 – demonstrating that some terraces were formed during interstadial or interglacial periods. The results provide a key for evaluating rates of neotectonic uplift, allowing us to decipher the response of a fluvial system to climate change within the context of the glacial–interglacial scheme.  相似文献   

15.
采用热释光(TL)测年方法对龙虎山丹霞地貌区泸溪河的阶地进行了年代学研究,获得了低阶地沉积物的堆积年代及其阶地面的形成时代,该区河流主要发育两级阶地,T1阶地堆积于3 400~6 000 a B.P.,其地貌面形成于3 400~4 000 a,T2阶地堆积于7 600~11 200 a B.P.,该级地貌面形成于7 600~8 000 a B.P.。利用低阶地地貌面的年代学成果,推算出龙虎山丹霞地貌区地壳隆升速率为0.33~0.63 m/ka,根据这一速率推算得出,第一夷平面形成于6×104a左右,第二夷平面形成于28×104a左右。分布于这些夷平面上的丹霞地貌景观的年龄与此相当。  相似文献   

16.
The geomorphology of the river terraces in the lower Vistula River valley of North PÖland is briefly described. They were earlier regarded as Late Wiirmian (terraces IX-IV) and Holocene (terraces III–I). Litho- and biostratigraphical studies of terrace depressions together with radiocarbon datings of their bottom layers indicate that even terrace II was formed during the Allerød Chronozone (11,800 to 11,000 B.P.) or earlier. In addition, radiocarbon datings have shown that the surface sediments of the flood plain were deposited in middle Holocene. These datings are of importance to the chronology of other large river valleys in the southern Baltic region. The interrelationship between erosion/accumulation in the Vistula valley and the shore level of the Baltic is also discussed.  相似文献   

17.
西昆仑山前河流阶地的形成及其构造意义   总被引:4,自引:0,他引:4  
王永  王军  肖序常  迟振卿  王彦斌 《地质通报》2009,28(12):1779-1785
西昆仑山前河流普遍发育6级阶地,利用光释光(OSL)与热释光(TL)方法对采自西昆仑山前几条主要河流的低阶地堆积物样品进行年代测定。研究结果显示,主要河流低阶地的形成具有同时性,构造活动是河流阶地形成的主要控制因素。河流阶地的年龄测定结果表明,西昆仑山前河流阶地最早形成于约1.2Ma,T4、T3、T2阶地分别形成于约39ka、18ka和5ka。多级阶地的形成反映了河流自早更新世中期开始下切于活动抬升的西昆仑山。河流阶地的发育及区域对比揭示了西昆仑第四纪晚期以来的隆升过程,区域构造活动明显地影响河流的形态与行为。河流阶地的分布、地貌特征及区域对比表明,河流阶地的形成与演化受新构造活动、山脉隆升、气候变化等多种因素的影响。  相似文献   

18.
摘要:西南天山山前的阿图什背斜带是晚第四纪以来强烈活动的褶皱带,博古孜河横切背斜构造的中段,在背斜区形成6级基座阶地,为晚第四纪以来阿图什背斜阶段性褶皱隆起的地貌标志。 用差分GPS测量阶地纵剖面,发现T1、T2和T4阶地面在背斜的北翼坡向北,与河流的流向相反。T1、T2和T5阶地面在背斜的南翼坡向南,平均坡度分别为0.9°、1.2°和1.8°,远大于现代河床的平均坡度角0.5°。通过细颗粒石英和细颗粒混合矿物的光释光简单多片再生法(SMAR)测年,确定博古孜河T1、T2、T3、T4和T5阶地的形成年龄分别为距今约(25.0±2.6)、(42.7±4.4)、(63.1±6.3)、(96.9±9.9)和(120±10) ka BP。晚第四纪不同时段博古孜河的下切速率具有不均匀性,其中T3和T4阶地的下切速率分别为049和044 mm/a,T1 、T2和T5阶地的下切速率分别为12、169和136 mm/a。博古孜河分别在(120±10)~(96.9±9.9) ka、(42.7±4.4)~(25.0±2.6) ka和(25.0±2.6) ka至今的3个时段发生强烈的下切,应是阿图什背斜带在该时段快速构造隆起导致河流加速下切。  相似文献   

19.
The Kunlun Range, a reactivated orogenic belt, constitutes the northern margin of the Tibetan Plateau. The extreme relief and major landforms of the Kunlun Range are a product of late Cenozoic tectonics and erosion. However, well-developed late Quaternary terraces that occur along the northern slope of the Kunlun Range probably resulted from climatic change rather than surface uplift. The terrace sequences formed in thick Quaternary valley fills and have total incision depths of 50–60 m. Optically stimulated luminescence dating was employed to place time controls on the valley fills and associated terraces. Dating results suggest that periods of significant aggradation were synchronous between different rivers and correspond to the last glacial stage. The abrupt change from aggradation to incision occurred between 21.9 ± 2.7 and 16 ± 2.2 ka, coincident with the last glacial–interglacial transition. Additional terraces developed during the late glacial period and early to middle Holocene. Based on a broader set of chronological data in northern Tibet, at least four regional incision periods can be recognized. Chronological data, terrace elevation profiles, and climate proxy records suggest that these terracing periods were triggered by cool and/or wet climatic conditions. A geometric survey of the riverbed longitudinal profile suggests that surface uplift serves as a potential dynamic forcing for long-term incision. A model is proposed for terrace formation as a response to climatic perturbation in an uplifted mountain range.  相似文献   

20.
兰州黄河阶地演变过程对滑坡活动的控制效应   总被引:1,自引:0,他引:1       下载免费PDF全文
为探索特殊地质环境-河流阶地孕育滑坡的相关性, 更深入地认识这类河流岸坡的变形破坏过程, 在广泛分析区域工程地质资料的基础上, 从第四系地貌学与工程地质学相结合的角度, 研究了兰州市黄河河谷演化发育的阶段性特征和黄河阶地演化对滑坡的控制效应及其诱发模式.研究表明: (1)黄河河谷的演化对兰州地区滑坡发育的控制作用具有时间上的阶段性和空间上的分带性, 在河谷演化不同阶段滑坡有着不同的发育模式和形成机理; (2)阶地型滑坡主要诱发因素为新构造运动的强烈抬升、黄河强烈下切以及阶地形成期相对湿润的古气候.第三系泥岩地层间形成的软弱夹层可诱发大型黄土泥岩滑坡, 而黄土层内多发中小型崩滑.河谷演化期间, 滑坡的发生可能导致部分阶地的缺失.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号