首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
The Jurassic to Early Cretaceous magmatic arc of the Andes in northern Chile was a site of major additions of juvenile magmas from the subarc mantle to the continental crust. The combined effect of extension and a near stationary position of the Jurassic to lower Cretaceous arc favoured the emplacement and preservation of juvenile magmatic rocks on a large vertical and horizontal scale. Chemical and Sr, Nd, and Pb isotopic compositions of mainly mafic to intermediate volcanic and intrusive rock units coherently indicate the generation of the magmas in a subduction regime and the dominance of a depleted subarc mantle source over contributions of the ambient Palaeozoic crust. The isotopic composition of the Jurassic (206Pb/204Pb: ∼ 18.2; 207Pb/204Pb: ∼ 15.55; 143Nd/144Nd: ∼ 0.51277; 87Sr/86Sr: ∼ 0.703–0.704) and Present (206Pb/204Pb: ∼ 18.5; 207Pb/204Pb: ∼ 15.57; 143Nd/144Nd: ∼ 0.51288; 87Sr/86Sr: ∼ 0.703–0.704) depleted subarc mantle beneath the Central and Southern Andes (18°–40°S) was likely uniform over the entire region. Small differences of isotope ratios between Jurassic and Cenozoic to Recent of subarc mantle-derived could be explained by radiogenic growth in a still uniform mantle source.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

2.
Seven hundred and twenty-five Sr, two hundred and forty-three Nd and one hundred and fifty-one Pb isotopic ratios from seven different Mexican magmatic provinces were compiled in an extensive geochemical database. Data were arranged according to the Mexican geological provinces, indicating for each province total number of analyses, range and mean of values and two times standard deviation (2σ). Data from seven provinces were included in the database: Mexican Volcanic Belt (MVB), Sierra Madre Occidental (SMO), Baja California (BC), Pacific Ocean (PacOc), Altiplano (AP), Sierra Madre del Sur (SMS), and Sierra Madre Oriental (SMOr). Isotopic values from upper mantle and lower crustal xenoliths, basement outcrops and sediments from the Cocos Plate were also compiled. In the MVB the isotopic ratios range as follows:87Sr/86Sr 0.703003-0.70841;143Nd/144Nd 0.512496-0.513098;206Pb/204Pb 18.567-19.580;207Pb/204Pb 15.466-15.647;208Pb/204Pb 38.065-38.632. The SMO shows a large variation in87Sr/86Sr ranging from ∼0.7033 to 0.71387.143Nd/144Nd ratios are relatively less variable with values from 0.51191 to 0.51286. Pb isotope ratios in the SMO are as follows:206Pb/204Pb 18.060-18.860;207Pb/204Pb 15.558-15.636;208Pb/204Pb 37.945-38.625. PacOc rocks show the most depleted Sr and Nd isotopic ratios (0.70232-0.70567 for Sr and 0.512631-0.513261 for Nd). Pb isotopes for PacOc show the following range:206Pb/204Pb 18.049-19.910;207Pb/2047Pb 15.425-15.734;208Pb/204Pb 37.449-39.404. The isotopic ratios of the AP rocks seem to be within the range of those from the PacOc. Most samples with reported Sr and Nd isotopic data are spread within and around the “mantle array”. The SMO seems to have been formed by a mixing process between mantle derived magmas and continental crust. The MVB appears to have a larger mantle component, with AFC as the dominant petrogenetic process for the evolved rocks. There is still a need for Pb isotopic data in all Mexican magmatic provinces and of Nd isotopes in BC, AP, SMS, and SMOr.  相似文献   

3.
A detailed Sr−Nd isotopic study of primary apatite, calcite and dolomite from phoscorites and carbonatites of the Kovdor massif (380 Ma), Kola peninsula, Russia, reveals a complicated evolutionary history. At least six types of phoscorites and five types of carbonatite have been identified from Kovdor by previous investigators based on relative ages and their major and accessory minerals. Isotopic data from apatite define at least two distinct groups of phoscorite and carbonatite. Apatite from the earlier phoscorites and carbonatites (group 1) are characterized by relatively low87Sr/86Sr (0.70330–0.70349) and143Nd/144Nd initial ratios (0.51230–0.51240) with F=2.01–2.23 wt%, Sr=2185–2975 ppm, Nd=275–660 ppm and Sm=31.7–96.2 ppm. Apatite from the second group has higher87Sr/86Sr (0.70350–0.70363) and143Nd/144Nd initial ratios (0.51240–0.51247) and higher F (2.63–3.16 wt%), Sr (4790–7500 ppm), Nd (457–1074 ppm) and Sm (68.7–147.6 ppm) contents. This group corresponds to the later phoscorites and carbonatites. One apatite sample from a carbonatite from the earlier group fits into neither of the two groups and is characterized by the highest initial87Sr/86Sr (0.70385) and lowest143Nd/144Nd (0.51229) of any of the apatites. Within both groups initial87Sr/86Sr and143Nd/144Nd ratios show negative correlations. Strontium isotope data from coexisting calcite and dolomite support the findings from the apatite study. The Sr and Nd isotopic similarities between carbonatites and phoscorites indicate a genetic relationship between the two rock types. Wide variations in Sr and Nd isotopic composition within some of the earlier carbonatites indicate several distinct intrusive phases. Oxygen isotopic data from calcite and dolomite (δ18O=+7.2 to +7.7‰ SMOW) indicate the absence of any low-temerature secondary processes in phoscorites and carbonatites, and are consistent with a mantle origin for their parental melts. Apatite data from both groups of phoscorite plot in the depleted quadrant of an εNd versus εSr diagram. Data for the earlier group lie along the Kola Carbonatite Line (KCL) as defined by Kramm (1993) and data from the later group plot above the KCL. The evolution of the phoscorites and carbonatites cannot be explained by simple magmatic differentiation assuming closed system conditions. The Sr−Nd data can best be explained by the mixing of three components. Two of these are similar to the end-members that define the Kola Carbonatite Line and these were involved in the genesis of the early phoscorites and carbonatites. An additional component is needed to explain the isotopic characteristics of the later group. Our study shows that apatite from rocks of different mineralogy and age is ideal for placing constraints on mantle sources and for monitoring the Sr−Nd evolution of carbonatites. Editorial responsibility: W. Schreyer  相似文献   

4.
The Nd and Sr isotopic ratios on a suite of continental alkali basalts from Marie Byrd Land, West Antarctica, define a change in the source over the range of K/Ar dates between 1 and 28 m.y. ago. The 87Sr/86Sr isotopic ratios (0.7026 to 0.7031) are unusually low for continental alkali basalts, although the corresponding 143Nd/144Nd ratios (0.51283 to 0.51299) are similar to previously reported values. On a 87Sr/86Sr vs. 143Nd/144Nd diagram, they define a trend on the low 87Sr/86Sr side of the “mantle array”, which has a slope steeper than the mantle array. An explanation for the light rare earth elements (LREE) enrichment of the alkali basalts, with high 143Nd/144Nd ratios and low 87Sr/86Sr ratios, is suggested by a model which modifies the source region with a mantle-derived, CO2-enriched metasomatic fluid.  相似文献   

5.
Sr and Nd isotopic compositions of one trachyte, eight phonolites and five basalts have been measured. The isotopic characteristics of the trachyte can be explained by a combined assimilation–fractional crystallization process within an upper crustal magmatic chamber. Some phonolites display isotopic signatures identical to basalts, suggesting that they have been protected against any crustal assimilation during their formation. Some others have low Sr contents, whereas they are enriched in radiogenic Sr (0.70451<87Sr/86Sri<0.71192), and display basaltic 143Nd/144Nd ratios. Both observations could be explained by very strong alkali feldspar fractionation and by subsequent very low assimilation of surrounding rocks (between 0.3 and 4%) during intrusion. To cite this article: J.-M. Dautria et al., C. R. Geoscience 336 (2004).  相似文献   

6.
The isotope-geochemical study of the Eocene-Oligocene magmatic rocks from the Western Kamchatka-Koryak volcanogenic belt revealed a lateral heterogeneity of mantle magma sources in its segments: Western Kamchatka, Central Koryak, and Northern Koryak ones. In the Western Kamchatka segment, magmatic melts were generated from isotopically heterogeneous (depleted and/or insignificantly enriched) mantle sources significantly contaminated by quartz-feldspathic sialic sediments; higher 87Sr/86Sr (0.70429–0.70564) and lower 143Nd/144Nd(ɛNd(T) = 0.06–2.9) ratios in the volcanic rocks from the Central Koryak segment presumably reflect the contribution of enriched mantle source; the high positive ɛNd(T) and low 87Sr/86Sr ratios in the magmatic rocks from the Northern Koryak segment area indicate their derivation from isotopically depleted mantle source without significant contamination by sialic or mantle material enriched in radiogenic Sr and Nd. Significantly different contamination histories of the Eocene-Oligocene mantle magmas in Kamchatka and Koryakia are related to their different thermal regimes: the higher heat flow beneath Kamchatka led to the crustal melting and contamination of mantle suprasubduction magmas by crustal melts. The cessation of suprasubduction volcanism in the Western Kamchatka segment of the continentalmargin belt was possibly related to the accretion of the Achaivayam-Valagin terrane 40 Ma ago, whereas suprasubduction activity in the Koryak segment stopped due to the closure of the Ukelayat basin in the Oligocene time.  相似文献   

7.
Elemental and Li–Sr–Nd isotopic data of minerals in spinel peridotites hosted by Cenozoic basalts allow us to refine the existing models for Li isotopic fractionation in mantle peridotites and constrain the melt/fluid-peridotite interaction in the lithospheric mantle beneath the North China Craton. Highly elevated Li concentrations in cpx (up to 24 ppm) relative to coexisting opx and olivine (<4 ppm) indicate that the peridotites experienced metasomatism by mafic silicate melts and/or fluids. The mineral δ7Li vary greatly, with olivine (+0.7 to +5.4‰) being isotopically heavier than coexisting opx (−4.4 to −25.9‰) and cpx (−3.3 to −21.4‰) in most samples. The δ7Li in pyroxenes are considerably lower than the normal mantle values and show negative correlation with their Li abundances, likely due to recent Li ingress attended by diffusive fractionation of Li isotopes. Two exceptional samples have olivine δ7Li of −3.0 and −7.9‰, indicating the existence of low δ7Li domains in the mantle, which could be transient and generated by meter-scale diffusion of Li during melt/fluid-peridotite interaction. The 143Nd/144Nd (0.5123–0.5139) and 87Sr/86Sr (0.7018–0.7062) in the pyroxenes also show a large variation, in which the cpx are apparently lower in 87Sr/86Sr and slightly higher in 143Nd/144Nd than coexisting opx, implying an intermineral Sr–Nd isotopic disequilibrium. This is observed more apparently in peridotites having low 87Sr/86Sr and high 143Nd/144Nd ratios than in those with high 87Sr/86Sr and low 143Nd/144Nd, suggesting that a relatively recent interaction existed between an ancient metasomatized lithospheric mantle and asthenospheric melt, which transformed the refractory peridotites with highly radiogenic Sr and unradiogenic Nd isotopic compositions to the fertile lherzolites with unradiogenic Sr and radiogenic Nd isotopic compositions. Therefore, we argue that the lithospheric mantle represented by the peridotites has been heterogeneously refertilized by multistage melt/fluid-peridotite interactions.  相似文献   

8.
The Sr- and Nd-isotopic compositions of large mid-Cenozoic caldera-forming eruptions, and related rocks, from the western portion of the Mogollon-Datil volcanic field have been determined. The average initial 87Sr/86Sr ratios of 27 samples from felsic flows range from 0.70629 to 0.72872; however, all but two flows are 0.71337 or less. Ten analyses of intermediate and mafic rocks showed a tendency towards lower initial 87Sr/86Sr ranging from 0.70363 to 0.70968. Initial 143Nd/144Nd ratios of II felsic and intermediate rocks range from 0.51216 to 0.51231. Two basalts analyzed for 143Nd/144Nd have ratios of 0.51250 and 0.51291. During the course of the volcanic activity from 34 Ma to the present, there was a shift towards lower initial 87Sr/86Sr ratios, and lower SiO2 contents. A number of models of crustal melting, fractionation, mixing, and assimilation and fractional crystallization (AFC), using a variety of possible endmembers, were tested, to see if they could explain the isotopic and geochemical characteristics of the Mogollon-Datil volcanic rocks. The best fit was an AFC model using two components, one a mantle-sourced primary magma, with isotopic ratios of the Kilbourne Hole, N. M., basanite, and the other an upper crust with average continental isotopic ratios, and Sr and Nd abundances similar to the Texas Canyon pluton of Arizona.  相似文献   

9.
The Mesozoic volcanic rocks in the coastal region of southeastern China were superimposed on some different basement tectonic elements. The volcanic rocks developed in these different basement tectonic elements have great differences in Sr and Nd isotopic compositions. The rocks in western Zhejiang and northeastern Jiangxi Provinces which belong to the Lower Yangtze subplate have lower initial 87Sr/ 86Sr ratios, but are higher in initial Nd isotopic ratios. The initial 143Nd / 144Nd values of the volcanic rocks developed in the Cathaysian subplate increase clearly from early to late in time, and from the core of the Wuyishan uplift coastwards constantly, but the initial 87Sr/86Sr values tend to decrease. The isotopic characteristics and their spatial variations in Mesozoic volcanic rocks in the study region are, to a great extent, manifestations of the isotopic characteristics in basement metamorphic complexes, and the generation of the Mesozoic acid magma in this region is attributed to the recycling o  相似文献   

10.
The major, trace (including rare earth) element abundances, and Sr-Nd-Pb isotopic compositions, have been analysed for andesitic basalt and andesitic sills and lavas of the Jurassic Ferrar Magmatic Province, Prince Albert Mountains, Antarctica. The typical “crustal signature” of the Ferrar magmatism, characterized by relatively high SiO2, LREE and LILE contents in these samples, is associated with high 87Sr/86Sr and low 143Nd/144Nd. Systematic correlations of major and trace elements indicate that fractional crystallization was important. However, increases in incompatible elements are positively correlated with initial 87Sr/86Sr, suggestive of crustal assimilation processes. The observed correlations between initial 87Sr/86Sr and LREE enrichments have been modelled by an AFC process, starting from the least evolved sample and assuming the compositions of the orthogranulites of Victoria Land as contaminants. The REE patterns of the least evolved Ferrar rocks approach those of E-type MORB, differing only by higher LREE/IREE. The enrichment in LREE, accompanying high initial 87Sr/86Sr, 207Pb/204Pb and low 143Nd/144Nd compared with E-type MORB, can be explained by interaction of “primary Ferrar basalt” with crystalline basement. We propose a petrological model whereby Ferrar magmas were generated through high degrees of melting of an E-type MORB mantle source, and subsequently these “primary” melts underwent AFC processes inheriting a crustal signature. The Sr-Nd-Pb isotopic compositions required by the AFC model for the primary Ferrar basalt are similar to those of the Dupal signature of the oceanic basalts of the Southern Hemisphere (Hart 1984). Transantarctic Mountains would have been located inside the Dupal anomaly in pre-Gondwana dispersion times. Received: 21 April 1998 / Accepted: 25 January 1999  相似文献   

11.
Isotopic (Nd and Sr) and chemical compositions of the 177 Ma Kirkpatrick Basalt and Ferrar Dolerite from north Victoria Land, Antarctica, are examined in order to address the role of crustal assimilation and the characteristics of their mantle source. Results for the Scarab Peak chemical type (SPCT) that constitutes the flow unit capping the lava sequence [Mg-number, Mg/(Mg+Fe+2)=24, MgO=2.4%, SiO2=57.1%, initial87Sr/86Sr=0.7087–0.7097, (εNd=−4.3) conform previous reports that attribute variations in the concentrations of the more mobile elements and calculated initial87Sr/86Sr to mid-Cretaceous alteration and elevated δ18O to low-temperature interaction with meteoric water. The underlying lavas and the sills that are of the Mt. Fazio chemical type (MFCT) display a much wider range of both chemical and isotopic compositions (Mg-number=40–65, MgO=3.7 7.5%; SiO2=52.6–58.3%, initial87Sr/86Sr=0.7087–0.7117, εNd=−5.6 to −4.8). The effects of rock alteration on apparent initial87Sr/86Sr are demonstrated by large differences between the initial ratio of mineral separates or leached fractions and whole rocks. Cretaceous alteration produced Rb and Sr redistribution within the lava sequence that results in erroneous calculated initial87Sr/86Sr ratios. These effects are responsible for the large initial87Sr/86Sr variations previousl7 proposed which, combined with the large range in whole-rock δ18O, were purported to show very large degrees of crustal assimilation. The variations in εNd are restricted and indicate much smaller degrees of assimilation. The least altered of the MFCT rocks show good chemical and isotopic correlations that can be integrated into a model involving fractionation of pyroxene and plagioclase coupled with assimilation of material similar to early Paleozoic basement. The lower87Sr/86Sr and higher εNd of the SPCT suggest that they were derived by extensive fractionation of a more primitive, less contaminated, precursor of the MFCT. The most isotopically primitive Ferrar rocks from the region still have a high initial87Sr/86Sr and low initial143Nd/144Nd; this may reflect either earlier assimilation or an enriched source. The chemical and isotopic similarities, as well as the close geographic correspondence of the Ferrar Group to granitoids produced during the early Paleozoic Ross Orogeny suggest that in either case Ross-type material may have been involved in the development of the enriched isotopic signature. Editorial responsibility: I. Parsons  相似文献   

12.
Hafnium isotope results from mid-ocean ridges and Kerguelen   总被引:1,自引:0,他引:1  
176Hf/177Hf ratios are presented for oceanic volcanics representing both extremes of the range of mantle HfNdSr isotopic variation. Hf from critical mid-ocean ridgebasalts shows that 176Hf/177Hf does indeed have a greater variability than 143Nd/144Nd and 87Sr/86Sr in the depleted mantle. This extra variation is essentially of a random nature, and can perhaps be understood in terms of known Rb/SrSm/NdLu/Hf fractionation relationships. At the other extreme of mantle isotopic composition, 176Hf/177Hf ratios for igneous rocks from the Indian Ocean island of Kerguelen show a closely similar variation to published 143Nd/144Nd ratios for the same samples. Comparison of HfNdSr c relationships for Tristan da Cunha, Kerguelen and Samoa reveals divergences in the mantle array for ocean island magma sources, and perhaps suggests that these irregularities are largely the result of an extra component of 87Sr/86Sr variation.  相似文献   

13.
From 33°–42° S in central-south Chile, there are numerous volcanoes which form part of the Andean magmatic arc caused by subduction of the Nazca plate beneath western South America. The <0.3 m.y. old Laguna del Maule volcanic complex at 36° S is in a transition region between volcanoes at 33°–34° S formed dominantly of hornblende-bearing andesite and volcanoes south of 37° S dominantly composed of basalt and basaltic andesite. The Laguna del Maule complex ranges in composition from basalt (0.3 m.y.) to rhyolite (post-glacial). Although there is abundant evidence for magma mixing, basalt and rhyolite have similar Sr and Nd isotopic ratios, thereby requiring that the mixing members had the same isotopic ratios (87Sr/ 86Sr 0.70419 and 143Nd/144Nd 0.51274). In contrast, dacitic dikes and a volcanic neck which also have evidence for magma mixing are isotopically distinct. Major and trace element abundances are consistent with a genetic relationship between the basalt and rhyolite, either by low-pressure, plagioclase-dominated, fractional crystallization or by partial melting of a plagioclase-rich assemblage. There is no evidence that the rhyolites contain more of a crustal component than the associated basic volcanics.  相似文献   

14.
The Myggbukta caldera complex and a swarm of basic dykes constitute the latest Tertiary magmatism in the Hold with Hope region, East Greenland. The Sr and Nd isotope ratios of these rocks show coherent variations which extend to high 87Sr/86Sr and low 143Nd/144Nd values and require a contribution from continental lithosphere. Broad correlations with major element differentiation indices suggest that the continental component was incorporated during magmatic differentiation thereby favouring a crustal contamination process. Trace element concentrations are strongly correlated with isotopic compositions but display ranges for many incompatible elements which extend beyond likely crustal contaminant compositions. This is readily modelled by AFC processes in which the dominant cause of trace element enrichment is the concentration effect of fractional crystallisation rather than the composition of the contaminant. The simplest such models still require unrealistically high degrees of fractional crystallisation to explain the ten-fold enrichment of some trace elements. This can be overcome if the primary magmas entering the crust already had highly variable trace element compositions. Such variability is readily achieved if melts from different parts of the melting column escape without thorough homogenization. An AFC model which incorporates variability in parental magma composition is then able to simulate the range of compositions observed at Hold with Hope. This carries the implication that the variations observed are more readily attributed to changes in uncontaminated parental magma than to variations in the composition or amount of contaminant. Received: 5 March 1998 / Accepted: 16 June 1998  相似文献   

15.
Summary Volcanic rocks on Ponza Island (Tyrrhenian Sea, central Italy) consist of Pliocene submarine rhyolites and Pleistocene subaerial trachyte and comendite lavas. Chemical variations and the homogeneous Sr and Nd isotopic signatures within the analyzed Pliocene rocks are ascribed to crystal fractionation. The absolute isotopic values, however, indicate the important role of a crustal component in the origin of these magmas. The very high-silica rocks were probably derived from a superimposed mechanism which may have been connected to the ascent of hydrothermal magmatic fluids. Compositional and 87Sr/86Sr variations at constant 143Nd/144Nd values in the Pleistocene rocks are likely due to fractionation of the observed phenocryst assemblage, possibly coupled with minor crustal interaction. These processes, however, cannot account for the extreme enrichment of many incompatible trace elements in the comendites. Some evidence suggests the influence of a halogen- and/or CO2-rich volatile phase. Received February 17, 2000; revised version accepted November 29, 2000  相似文献   

16.
Cenozoic lamprophyres (minettes, spessartites, kersantite) from the Western Alps, northern Italy, represent small volume, mafic melts with high Mg#s and high Ni and Cr contents. All the lamprophyres show light REE enrichment, high incompatible element contents, and Ta, Ti and Nb troughs on chondrite-normalized diagrams. Age-corrected 87Sr/86Sr isotopic ratios (assuming t = 30 Ma) are highly variable and range from 0.70590 to 0.71884; 143Nd/144Nd ratios range from 0.51203 to 0.51242. Pb isotopic ratios are: 206Pb/204Pb = 18.669–18.895, 207Pb/204Pb = 15.605–15.689 and 208Pb/204Pb = 38.224–39.134. 87Sr/86Sr ratios show a negative correlation with 143Nd/144Nd, and a positive correlation with K, Ba, and Rb as well as with Ti, Th, Ta, Nb and Zr abundances. The primitive nature of the lamprophyres, coupled with their enriched incompatible trace element and isotopic signatures, suggest derivation from a metasomatized upper mantle source. Linear arrays in isotope space and elemental data plots suggest mixing between two distinct end-members in the Italian mantle; an enriched end-member that is isotopically similar to pelagic sediments, and a significantly less enriched end-member that approaches Bulk Earth values. New isotopic data indicate that the mantle source(s) of the lamprophyres from the Western Alps contain a very high proportion of the enriched end-member. The geochemical signature of the enriched end-member is attributed to fluids or melts derived from pelagic sediments subducted during the closure of the Tethyan Ocean in the late Cretaceous to early Tertiary.  相似文献   

17.
SIMONETTI  A.; BELL  K. 《Journal of Petrology》1994,35(6):1597-1621
Initial Nd, Pb, and Sr isotopic data from carbonatites and associatedintrusive silica-undersaturated rocks from the early Jurassic,Chilwa Island complex, located in southern Malawi, central Africa,suggest melt derivation from a Rb/Sr- and Nd/Sm-depleted butTh/Pb- and U/Pb-enriched mantle source. Initial 143Nd/144Nd(0.51265–0.51270) isotope ratios from the Chilwa Islandcarbonatites are relatively constant, but their initial 87Sr/86Sr(0.70319–0.70361) ratios are variable. The 18Osmow (9.53–14.15%0)and 13CPDB (–3.27 to –1.50%0) isotope ratios ofthe carbonates are enriched relative to the range of mantlevalues, and there is a negative correlation between 18O andSr isotope ratios. The variations in Sr, C, and O isotopic ratiosfrom the carbonatites suggest secondary processes, such as interactionwith meteoric groundwater during late-stage carbonatite activity.The initial 143Nd/144Nd (0.51246 0.51269) and initial 87Sr/86Sr(0.70344–0.70383) isotope ratios from the intrusive silicaterocks are more variable, and the Sr more radiogenic than thosefrom the carbonatites. Most of the Pb isotope data from Chilwa Island plot to the rightof the geochron and close to the oceanic regression line definedby MORBs and OIBs. Initial Pb isotopic ratios from both carbonatites(207Pb/204Pb 15.63–15.71; 206Pb/204Pb 19.13–19.78)and silicate rocks (207Pb/204Pb 15.61–15.72; 206Pb/204Pb18.18–20.12) show pronounced variations, and form twogroups in Pb-Pb plots. The isotopic variations shown by Nd, Pb, and Sr for the ChilwaIsland carbonatites and intrusive silicates suggest that thesemelts underwent different evolutionary histories. The chemicaldata, including isotopic ratios, from the carbonatites and olivinenephelinites are consistent with magmatic differentiation ofa carbonated-nephelinite magma. A model is proposed in whichdifferentiation of the carbonatite magma was accompanied byfenitization (metasomatic alteration) of the country rocks bycarbonatite-derived fluids, and subsequent alteration of thecarbonatite by hydrothermal activity. The chemical and isotopicdata from the non-nephelinitic intrusive silicate rocks reveala more complex evolutionary history, involving either selectivebinary mixing of lower-crustal granulites and a nephelinitemagma, or incremental batch melting of a depleted source andsubsequent crustal contamination.  相似文献   

18.
Calbuco volcano is a Late Pleistocene-Holocene composite stratovolcano located at 41°20 S, in the southern region of the Southern Volcanic Zone of the Andes (SSVZ; 37°–46° S). In contrast to basalt and basaltic andesite, which are the dominant lava types on the volcanic front from 37° to 42° S, Calbuco lavas are porphyritic andesites which contain a wide variety of crustal xenoliths. They have SiO2 contents in the 55–60% range, and have comparatively low K2O, Rb, Ba, Th and LREF abundances relative to other SSVZ centers. Incompatible element abundance ratios are similar to those of most SSVZ volcanics, but 87Sr/86Sr and 143Nd/144Nd are respectively higher and lower than those of adjacent volcanic centers. Basalts from nearby Osorno stratovolcano, 25 km to the northeast, are similar to other basaltic SSVZ volcanoes. However, basalts from several minor eruptive centers (MEC), located east of Calbuco and Osorno volcano along the Liquiñe-Ofqui fault zone (LOFZ), are enriched in Ba, Nb, Th and LREE, and have higher La/Yb and lower Ba/La, K/La and Rb/La. 87Sr/86Sr and 143Nd/144Nd in MEC basalts are respectively lower and higher than those of Osorno and Calbuco lavas. We suggest that MEC basalts were produced by lower extents of mantle melting than basalts from Osorno and other SSVZ stratovolcanoes, probably as a result of lower water content in the source of MEC basalts. Calbuco andesites formed from basaltic parents similar to Osorno basalts, by moderate pressure crystallization of a hornblende-bearing assemblage accompanied by crustal assimilation. Hornblende stability in the Calbuco andesites was promoted by the assimilation of hydrous metasedimentary crustal rocks, which are also an appropriate endmember for isotopic trends, together with magma storage at mid-crustal depths. The unique characteristics of Calbuco volcano, i.e. the stability of hornblende at andesitic SiO2 contents, low 143Nd/144Nd and high 87Sr/86Sr, and abundant crustal xenoliths, provide evidence for crustal assimilation that is not apparent at more northerly volcanoes in the SSVZ.  相似文献   

19.
The Pb, Sr and Nd isotopic compositions of biomonitors (lichen, moss, bark) and soil litter from different regions in the Rhine valley, as well as of <0.45 μm particles separated out of ice of the Rhône and Oberaar glaciers and lichens from the Swiss Central Alps, have been determined in order to deduce the natural baseline of the atmospheric isotopic compositions of these regions, which are suggested to be close to the isotopic compositions of the corresponding basement rocks or soils at the same sites. 206Pb/207Pb and 87Sr/86Sr isotope ratios are positively correlated. Most polluted samples from traffic-rich urban environments have the least radiogenic Pb and Sr isotopic compositions with 206Pb/207Pb and 87Sr/86Sr ratios of 1.11 and 0.7094, respectively. These ratios are very different from those of the atmospheric baseline for the Vosges mountains and the Rhine valley (206Pb/207Pb: 1.158–1.167; 87Sr/86Sr: 0.719–0.725; εNd: −7.5 to −10.1). However, this study indicates that the baseline of the atmospheric natural Pb and Sr isotopic compositions is affected by anthropogenic (traffic, industrial and urban) emissions even in remote areas. Lichen samples from below the Rhône and Oberaar glaciers reflect the baseline composition close to the Grimsel pass in the Central Swiss Alps (87Sr/86Sr: 0.714 − 0.716; εNd: −3.6 to −8.1). The 143Nd/144Nd isotope ratios are highly variable (8ε units) and it is suggested that the variation of the 143Nd/144Nd is controlled by wet deposition and aerosols originating from the regional natural and industrial urban environments and from more distant regions like the Sahara in North Africa. The least anthropogenetically affected samples collected in remote areas have isotopic compositions closest to those of the corresponding granitoid basement rocks.  相似文献   

20.
利用套柱法快速分离提纯Sr和Nd元素   总被引:1,自引:1,他引:0  
样品放射性成因Sr-Nd同位素比值受控于源区初始同位素组成、放射性元素母体与子体相对丰度,以及衰变时间等因素。它们具有极强的示踪能力,因而在地质学领域有广泛的应用。传统的Sr-Nd同位素分析使用的是阳离子树脂,提纯Nd元素时往往涉及有机试剂以及调节pH值等操作,其分析效率较低。近年来特效树脂的出现使得分离这些元素变得简单,但是受硫酸根等因素影响,特效树脂使用次数有限。为了提高分析效率,缩短分析时间,本文开发了一种套柱法,该方法结合阳离子树脂和特效树脂,实现了Sr-Nd元素的快速分离,并且能延长特效树脂的使用寿命。实验采用阳离子树脂、Sr特效树脂和LN稀土特效树脂对玄武岩BCR-2标样进行了分析。Sr-Nd回收率均90%,BCR-2玄武岩~(87)Sr/~(86)Sr比值为0.705016±0.000016(n=36,1SD),~(143)Nd/~(144)Nd比值为0.512624±0.000012(n=39,1SD),与前人TIMS法获得的结果吻合(~(87)Sr/~(86)Sr:0.705000~0.705023;~(143)Nd/~(144)Nd:0.512630~0.512650)。最终分离提纯的溶液中~(85)Rb/~(86)Sr值小于0.01,~(147)Sm/~(144)Nd值小于0.001,表明该方法可以高效分离Rb-Sr和Sm-Nd,实现Sr、Nd同位素的准确分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号