首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 571 毫秒
1.
High-K mafic alkalic lavas (5.4 to 3.2 wt% K2O) from Deep Springs Valley, California define good correlations of increasing incompatible element (e.g., Sr, Zr, Ba, LREE) and compatible element contents (e.g., Ni, Cr) with increasing MgO. Strontium and Nd isotope compositions are also correlated with MgO; 87Sr/86Sr ratios decrease and ɛNd values increase with decreasing MgO. The Sr and Nd isotope compositions of these lavas are extreme compared to most other continental and oceanic rocks; 87Sr/86Sr ratios range from 0.7121 to 0.7105 and ɛNd values range from −16.9 to −15.4. Lead isotope ratios are relatively constant, 206Pb/204Pb ∼17.2, 207Pb/204Pb ∼15.5, and 208Pb/204Pb ∼38.6. Depleted mantle model ages calculated using Sr and Nd isotopes imply that the reservoir these lavas were derived from has been distinct from the depleted mantle reservoir since the early Proterozoic. The Sr-Nd-Pb isotope variations of the Deep Springs Valley lavas are unique because they do not plot along either the EM I or EM II arrays. For example, most basalts that have low ɛNd values and unradiogenic 206Pb/204Pb ratios have relatively low 87Sr/86Sr ratios (the EM I array), whereas basalts with low ɛNd values and high 87Sr/86Sr ratios have radiogenic 206Pb/204Pb ratios (the EM II array). High-K lavas from Deep Springs Valley have EM II-like Sr and Nd isotope compositions, but EM I-like Pb isotope compositions. A simple method for producing the range of isotopic and major- and trace-element variations in the Deep Springs Valley lavas is by two-component mixing between this unusual K-rich mantle source and a more typical depleted mantle basalt. We favor passage of MORB-like magmas that partially fused and were contaminated by potassic magmas derived from melting high-K mantle veins that were stored in the lithospheric mantle. The origin of the anomalously high 87Sr/86Sr and 208Pb/204Pb ratios and low ɛNd values and 206Pb/204Pb ratios requires addition of an old component with high Rb/Sr and Th/Pb ratios but low Sm/Nd and U/Pb ratios into the mantle source region from which these basalts were derived. This old component may be sediments that were introduced into the mantle, either during Proterozoic subduction, or by foundering of Proterozoic age crust into the mantle at some time prior to eruption of the lavas. Received: 28 February 1997 / Accepted: 9 July 1998  相似文献   

2.
The Jurassic to Early Cretaceous magmatic arc of the Andes in northern Chile was a site of major additions of juvenile magmas from the subarc mantle to the continental crust. The combined effect of extension and a near stationary position of the Jurassic to lower Cretaceous arc favoured the emplacement and preservation of juvenile magmatic rocks on a large vertical and horizontal scale. Chemical and Sr, Nd, and Pb isotopic compositions of mainly mafic to intermediate volcanic and intrusive rock units coherently indicate the generation of the magmas in a subduction regime and the dominance of a depleted subarc mantle source over contributions of the ambient Palaeozoic crust. The isotopic composition of the Jurassic (206Pb/204Pb: ∼ 18.2; 207Pb/204Pb: ∼ 15.55; 143Nd/144Nd: ∼ 0.51277; 87Sr/86Sr: ∼ 0.703–0.704) and Present (206Pb/204Pb: ∼ 18.5; 207Pb/204Pb: ∼ 15.57; 143Nd/144Nd: ∼ 0.51288; 87Sr/86Sr: ∼ 0.703–0.704) depleted subarc mantle beneath the Central and Southern Andes (18°–40°S) was likely uniform over the entire region. Small differences of isotope ratios between Jurassic and Cenozoic to Recent of subarc mantle-derived could be explained by radiogenic growth in a still uniform mantle source.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

3.
《Gondwana Research》2006,9(4):529-538
Sr, Nd and Pb isotopic compositions of the Cenozoic basalts were analyzed from Baengnyeongdo Island, Jeongok, Ganseong, and Jejudo Island of Korea. They reveal relatively enriched Sr and Nd isotopic compositions (87Sr/86Sr = 0.70330∼0.70555, 143Nd/144Nd = 0.51298∼0.51256) compared with MORB.207Pb/204Pb and 208Pb/204Pb values of all the analyzed Korean basalts lie above the Northern Hemisphere Reference Line (NHRL) defined by Hart (1984). Pb isotopic compositions of basalts from Jejudo Islands (206Pb/204Pb = 18.61∼19.12, 207Pb/204Pb = 15.54∼15.69, 208Pb/204Pb = 38.98∼39.72) are significantly more radiogenic than the rest (206Pb/204Pb = 17.72∼18.03, 207Pb/204Pb = 15.44∼15.58, 208Pb/204Pb = 37.77∼38.64). The Cenozoic Korean basalts thus can be divided into two groups based on their Sr, Nd and Pb isotopic compositions. The north group reveals mixing between DMM and EM1 while the south group displays DMM-EM2 mixing. Such a distribution is the same as Chinese Cenozoic basalts and it can be interpreted that the subcontinental lithospheric mantle under Korea represents simple lateral continuation of the South and North China Blocks. We suggest that Korean continental collision zone cross the Korean Peninsula through the region between the north and south basalt groups of Korea.  相似文献   

4.
We analyzed 17 fragments from a zoned allanite–epidote crystal (ca 2.2 mm × 4.0 mm), which had formed during different prograde and retrograde stages of ultra high pressure (UHP) and amphibolite facies metamorphism (240–230 Ma, Sulu Belt, E China), for the isotopic composition of Pb, Nd, and Sr and contents of Pb, U, and Th, Sr and Rb, and Nd and Sm. Since most fragments had 238U/204Pb and 232Th/204Pb values less than 1, corrections for in situ Pb growth are small and uncertainties in the recalculation of the Pb isotopic compositions to 240 Ma are insignificant. The recalculated Pb falls on a linear trend in the 206Pb/204Pb vs 207Pb/204Pb diagram with the allanite defining the low–206Pb/204Pb end (17.07) of this trend and the epidote defining its high–206Pb/204Pb end (17.56). The recalculated data scatter in the 206Pb/204Pb vs 208Pb/204Pb diagram, which implies that the initial Pb isotopic variation reflects the involvement of at least three different Pb sources. The low 87Rb/86Sr values account for a change in 87Sr/86Sr by in situ 87Sr growth of less than 0.0007, which implies that the isotopic heterogeneity of 87Sr/86Sr (0.70601–0.7200) is a primary feature. The Pb and Sr isotope data unequivocally demonstrate that contributions from different precursor minerals result in initial isotopic heterogeneity in the metamorphic reaction product. It is likely that such an initial isotopic heterogeneity also exists for Nd, but it could not be resolved in the present study. Initially heterogeneous Pb and Sr isotope compositions imply that age differences between core and rim of large crystals may result in the determination of highly arbitrary geological rates, especially for minerals with relatively low parent-to-daughter ratios.  相似文献   

5.
Seven hundred and twenty-five Sr, two hundred and forty-three Nd and one hundred and fifty-one Pb isotopic ratios from seven different Mexican magmatic provinces were compiled in an extensive geochemical database. Data were arranged according to the Mexican geological provinces, indicating for each province total number of analyses, range and mean of values and two times standard deviation (2σ). Data from seven provinces were included in the database: Mexican Volcanic Belt (MVB), Sierra Madre Occidental (SMO), Baja California (BC), Pacific Ocean (PacOc), Altiplano (AP), Sierra Madre del Sur (SMS), and Sierra Madre Oriental (SMOr). Isotopic values from upper mantle and lower crustal xenoliths, basement outcrops and sediments from the Cocos Plate were also compiled. In the MVB the isotopic ratios range as follows:87Sr/86Sr 0.703003-0.70841;143Nd/144Nd 0.512496-0.513098;206Pb/204Pb 18.567-19.580;207Pb/204Pb 15.466-15.647;208Pb/204Pb 38.065-38.632. The SMO shows a large variation in87Sr/86Sr ranging from ∼0.7033 to 0.71387.143Nd/144Nd ratios are relatively less variable with values from 0.51191 to 0.51286. Pb isotope ratios in the SMO are as follows:206Pb/204Pb 18.060-18.860;207Pb/204Pb 15.558-15.636;208Pb/204Pb 37.945-38.625. PacOc rocks show the most depleted Sr and Nd isotopic ratios (0.70232-0.70567 for Sr and 0.512631-0.513261 for Nd). Pb isotopes for PacOc show the following range:206Pb/204Pb 18.049-19.910;207Pb/2047Pb 15.425-15.734;208Pb/204Pb 37.449-39.404. The isotopic ratios of the AP rocks seem to be within the range of those from the PacOc. Most samples with reported Sr and Nd isotopic data are spread within and around the “mantle array”. The SMO seems to have been formed by a mixing process between mantle derived magmas and continental crust. The MVB appears to have a larger mantle component, with AFC as the dominant petrogenetic process for the evolved rocks. There is still a need for Pb isotopic data in all Mexican magmatic provinces and of Nd isotopes in BC, AP, SMS, and SMOr.  相似文献   

6.
This study presents Sr and Pb isotopic ratios and Rb, Sr, U, Th, and Pb concentrations of an ultrapotassic basaltic suite and related rocks from the central Sierra Nevada, California. The ultrapotassic suite yields a narrow range of Sr and Pb isotopic compositions (87Sr/86Sr=0.70597–0.70653; 206Pb/ 204Pb=18.862–19.018; 207Pb/204Pb=15.640–15.686; 208Pb/ 204Pb=38.833–38.950). Associated basalts containing ultramafic nodules have less radiogenic Sr (87Sr/86=0.70430–0.70521) and generally higher Rb/Sr ratios than the ultrapotassic suite. Leucitites from Deep Springs Valley, California, contain high 87Sr/86Sr (71141–0.71240) and low 206Pb/204Pb (17.169–17.234) ratios, reflecting contamination by crustal granulite.The isotopic relationships support an origin of the ultrapotassic basaltic suite by partial melting of an enriched upper mantle source. Dehydration of a gently inclined oceanic slab beneath the Sierra Nevada may have provided Ba, K, Rb, Sr, and H2O, which migrated into the overlying upper mantle lithosphere. The end of subduction 10 m.y. ago allowed increased asthenospheric heat flow into the upper mantle lithosphere. The increased heat flow enhanced fluid movement in the upper mantle and contributed towards isotopic homogenization of the upper mantle source areas. Continued heating of the enriched upper mantle caused partial melting and subsequent eruption of the ultrapotassic lavas.  相似文献   

7.
 The Urach volcanic field is unique within the Tertiary–Quaternary European volcanic province (EVP) due to more than 350 tuffaceous diatremes and only sixteen localities with extremely undersaturated olivine melilitite. We report representative Pb-Sr-Nd isotopic compositions and incompatible trace element data for twenty-two pristine augite, Cr-diopside, hornblende, and phlogopite megacryst samples from the diatremes, and seven melilitite whole rocks. The Pb isotopic compositions for melilitites and comagmatic megacrysts have very radiogenic 206Pb/204Pb ratios of 19.4 to 19.9 and plot on the northern hemisphere mantle reference line (NHRL). The data indicate absence of an old crustal component as reflected in the high 207Pb/204Pb ratios of many basalts from the EVP. This inference is supported by 206Pb/204Pb ratios of ∼17.6 to 18.3 and ɛNd of ∼−7.8 to +1.6 for five phlogopite xenocryst samples reflecting a distinct and variably rejuvenated lower Hercynian basement. The 87Sr/86Sr ratios of 0.7033 to 0.7035 in the comagmatic megacrysts are low relative to their moderately radiogenic Nd isotopic compositions (ɛNd +2.2 to +5.1) and consistent with a long-term source evolution with a low Rb/Sr ratio and depletion in light rare-earth elements (LREE). The melilitite whole-rock data show a similar range in Nd isotopic ratios as determined for the megacrysts but their Sr isotopic compositions are often much more radiogenic due to surface alteration. The REE patterns and incompatible trace element ratios of the melilitites (e.g. Nb/Th, Nb/U, Sr/Nd, P/Nd, Ba/Th, Zr/Hf) are similar to those in ocean island basalts (OIB); negative anomalies for normalized K and Rb concentrations support a concept of melt evolution in the lithospheric mantle. Highly variable Ce/Pb ratios of 29 to 66 are positively correlated with La/Lu, La/K2O, and Ba/Nd and interpreted to reflect melting in the presence of residual amphibole and phlogopite. The data suggest an origin of the melilitites from a chemical boundary layer very recently enriched by melts from old OIB sources. We suggest that the OIB-like mantle domains represent low-temperature melting heterogeneities in an upwelling asthenosphere under western Europe. Received: 9 March 1995/Accepted: 24 July 1995  相似文献   

8.
The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs.  相似文献   

9.
Cenozoic lamprophyres (minettes, spessartites, kersantite) from the Western Alps, northern Italy, represent small volume, mafic melts with high Mg#s and high Ni and Cr contents. All the lamprophyres show light REE enrichment, high incompatible element contents, and Ta, Ti and Nb troughs on chondrite-normalized diagrams. Age-corrected 87Sr/86Sr isotopic ratios (assuming t = 30 Ma) are highly variable and range from 0.70590 to 0.71884; 143Nd/144Nd ratios range from 0.51203 to 0.51242. Pb isotopic ratios are: 206Pb/204Pb = 18.669–18.895, 207Pb/204Pb = 15.605–15.689 and 208Pb/204Pb = 38.224–39.134. 87Sr/86Sr ratios show a negative correlation with 143Nd/144Nd, and a positive correlation with K, Ba, and Rb as well as with Ti, Th, Ta, Nb and Zr abundances. The primitive nature of the lamprophyres, coupled with their enriched incompatible trace element and isotopic signatures, suggest derivation from a metasomatized upper mantle source. Linear arrays in isotope space and elemental data plots suggest mixing between two distinct end-members in the Italian mantle; an enriched end-member that is isotopically similar to pelagic sediments, and a significantly less enriched end-member that approaches Bulk Earth values. New isotopic data indicate that the mantle source(s) of the lamprophyres from the Western Alps contain a very high proportion of the enriched end-member. The geochemical signature of the enriched end-member is attributed to fluids or melts derived from pelagic sediments subducted during the closure of the Tethyan Ocean in the late Cretaceous to early Tertiary.  相似文献   

10.
Pb, Sr and Nd isotopic compositions have been analyzed in recent granites from Northern Africa, Northern Italy and Greece. Lead isotope compositions of K-feldspars are rather homogeneous, and cluster close to the modern lead of Stacey and Kramers (1975) but with slightly higher207Pb/204Pb and208Pb/204Pb ratios. The Cyclades samples, however, have higher206Pb/204Pb ratios. Addition of mantle-derived lead was probably very limited, which supports a quasi-closed system evolution of this element in the continental crust. The Sr, Nd data fall in the enriched part of the143Nd/144Nd vs.87Sr/86Sr diagram and define a smooth hyperbolic mixing curve. Over a wide area, straddling different orogens, most granites may be accounted for by a binary mixture between a recycled crustal component and a depleted mantle-like component. No correlation is observed between either Pb and Sr or Nd isotopic ratios, or any isotopic ratio and major element contents. Quantitative modelling suggests that two cases fit the Sr and Nd characteristics of these granites: they both require anatexis of the crust on a scale large enough to average the isotopic properties of heterogeneous terranes. In the first case, the mantle-derived component may be represented by differentiated Island Arc-type magmas, and the granites result from mixing these magmas with anatectic melts. In the second case, mantle-derived igneous rocks, such as obducted ophiolites, are part of the crustal source and their variable involvement in the anatectic process causes isotopic variations.CRPG Contribution n 630.  相似文献   

11.
Geochemical methods (major elements and Sr, Nd isotopes) have been used to (1) characterize Lake Le Bourget sediments in the French Alps, (2) identify the current sources of the clastic sediments and estimate the source variability over the last 600 years. Major element results indicate that Lake Le Bourget sediments consist of 45% clastic component and 55% endogenic calcite. In addition, several individual flood levels have been identified during the Little Ice Age (LIA) on the basis of their higher clastic content (> 70%).Potential sources of Lake Le Bourget clastic sediments have been investigated from Sr and Nd isotope compositions. The sediments from the Sierroz River and Leysse River which are mainly derived from the Mesozoic Calcareous Massifs are characterised by lower 87Sr/86Sr ratios and slightly lower ?Nd(0) ratios than the Arve River sediments which are derived from the Palaeozoic Mont-Blanc External Crystalline Massifs. The Rhône River appears to have been the main source of clastic sediments into the lake for the last 600 years, as evidenced by a similar Sr and Nd isotopic compositions analyzed in core B16 sediments (87Sr/86Sr = 0.719, ?Nd(0) = − 10) and in the sediments of the Rhône River (87Sr/86Sr = 0.719, ?Nd(0) = − 9.6).The isotopic signatures of flood events and background samples from core B16 in Lake Le Bourget are also similar. This indicates that prior to ∼ 1800, the inputs into the lake have remained relatively homogeneous with the proportion of clastic component mainly being a function of the palaeohydrology of the Rhone River. Early human modification (deforestation and agriculture) of the lake catchment before the 1800s appears to have had little influence on the source of clastic sediments.  相似文献   

12.
Trace element and isotopic compositions of mid-Tertiary siliceous magma sequences from two localities of the Sierra Madre Occidental, northern Mexico, display differences that reflect the composition and age of the basement through which they erupted. The crust beneath the section at San Buenaventura is thicker and more evolved and forms part of the North American basement, while that under El Divisadero consists of allochthonous terranes of island arc/oceanic? crust accreted during the Mesozoic.The volcanics are highly differentiated and range in composition from basalt to rhyolite (SiO2=50–76%). Those erupted through the accreted terranes display a small range of isotope ratios and have lowest initial (age-corrected) Sr isotope ratios (>0.7044) and the highest Nd (<0.5126) and Pb isotope ratios (206Pb/204Pb ∼18.9). Isotope ratios of the continental suite are more variable and form an array which trends away from that of the accreted terrane suite toward compositions more typical of old crust (to 87Sr/86Sr ∼0.710 and 143Nd/144Nd ∼0.5123). The volcanics in the continental zone are relatively more enriched in moderately incompatible elements compared with those within the accreted terranes (Ce/Yb=25–45 vs. 13–33, respectively), but are depleted in some highly incompatible elements such as U and Rb (e.g., Th/U=3.8–7.5 vs. 2.5–4.0, respectively). Those higher in the stratigraphic sections have higher 87Sr/86Sr, 208Pb/204Pb, and Th/U ratios, and lower 143Nd/144Nd ratios than those lower in the sections.The data have implications for the nature of the sources and the petrogenesis of these volcanics. The isotope ratios of both suites fall between those of mafic magma compositions from the Sierra Madre Occidental, and intermediate and felsic lower crustal xenoliths in northern Mexico and the southwestern USA. The relationship between the isotope ratios of the sequences and the age of the basement, combined with the fact that the overall data set forms well-defined isotopic arrays, demonstrates the strong effects of the crust on the chemistry of the silicic magmas. In the continental suite, isotope ratios covary with Th/Pb and U/Pb ratios, approaching the compositions found in the intermediate and felsic granulite facies xenoliths, strongly indicating that they are not anatectic melts of the lower crust but rather reflect interaction between mantle-derived basaltic parental magmas and the crust. Crustal contributions appear to be large, on the order of 20–70%. The small range of isotope ratios in the accreted terrane suite appears to reflect interaction of the basaltic parent with relatively juvenile crust whose isotopic composition is similar to the mantle-derived magmas. High Th/U and Th/Rb ratios indicate that the crustal contamination occurs in the lower crust. Moreover, the less radiogenic 206Pb/204Pb and 207Pb/204Pb ratios in the continental suite indicate that the depletion in highly incompatible elements in the continental lower crust is an old feature. The secular changes in the isotope ratios within the stratigraphic sections indicate increasingly shallow crustal contributions with time, initially by predominantly mafic deep lower crust and later by more felsic middle crust. Using lavas from outside of the two heavily sampled stratigraphic sections, the differences in the isotopic compositions between volcanics erupted through the accreted terranes and the continental basement help to delineate the location of the boundary.  相似文献   

13.
Neodymium, Sr and Pb isotopic compositions, along with rare earth element (REE) concentrations were determined for twelve black ores and one yellow ore from twelve localities of the Kuroko deposits, Japan. The ores were generated by submarine hydrothermal activity during the Miocene age. Neodymium isotopic compositions of the ores (Nd: –4.9 to +6.5) mostly overlap with spatially associated igneous rocks. On a Nd versus Sr isotopic correlation diagram, however, 87Sr/86Sr ratios are shifted from the associated igneous rocks towards the higher contemporaneous seawater ratio. REE patterns are highly variable, ranging from light REE enriched to depleted, and show no Ce anomalies, as would be expected if they were derived from seawater. These results suggest that the REEs contained in ores were mainly derived from the associated igneous rocks, but that the ore Sr is a mixture derived from both seawater and the igneous rocks. Most Pb isotopic compositions fall within the range defined by the associated igneous rocks (206Pb/204Pb=18.35–18.84, 207Pb/204Pb=15.59–15.97 and 208Pb/204Pb=38.53–39.90), although several samples have very radiogenic compositions that were most likely derived from basement rocks. Our new Pb isotopic results display greater variation, and have a larger range of more radiogenic compositions than has been noted previously for these ores. In addition, the black ore with the most radiogenic Pb isotopic composition also has the least radiogenic Nd isotopic composition. This suggests that at least some of the Pb contained in the ores was derived mainly from older basement rocks. The large positive Eu anomalies for some black ores are consistent with a high-temperature origin for the parental fluids, irrespective of the source rock. The single yellow ore examined, however, has a small negative Eu anomaly, which may indicate derivation from a lower temperature fluid. Previous studies suggested that the Kuroko ores were formed in the presence of organic materials in an anoxic basin. Combined Nd, Sr, Pb and Os isotopic and REE abundance data indicate that multiple sources were involved in the genesis of Kuroko ores.  相似文献   

14.
西藏东部玉龙铜矿带,包括玉龙、扎拉尕、莽总、多霞松多和马拉松多含矿斑岩,马牧普钾质碱性斑岩和总郭碱性火山岩等Sr、Nd、Pb同位素组成比较一致,其数据点均分布在地幔演化区,接近EMI地幔端元,暗示其物质来源于交代地幔源区。  相似文献   

15.
SIMONETTI  A.; BELL  K. 《Journal of Petrology》1994,35(6):1597-1621
Initial Nd, Pb, and Sr isotopic data from carbonatites and associatedintrusive silica-undersaturated rocks from the early Jurassic,Chilwa Island complex, located in southern Malawi, central Africa,suggest melt derivation from a Rb/Sr- and Nd/Sm-depleted butTh/Pb- and U/Pb-enriched mantle source. Initial 143Nd/144Nd(0.51265–0.51270) isotope ratios from the Chilwa Islandcarbonatites are relatively constant, but their initial 87Sr/86Sr(0.70319–0.70361) ratios are variable. The 18Osmow (9.53–14.15%0)and 13CPDB (–3.27 to –1.50%0) isotope ratios ofthe carbonates are enriched relative to the range of mantlevalues, and there is a negative correlation between 18O andSr isotope ratios. The variations in Sr, C, and O isotopic ratiosfrom the carbonatites suggest secondary processes, such as interactionwith meteoric groundwater during late-stage carbonatite activity.The initial 143Nd/144Nd (0.51246 0.51269) and initial 87Sr/86Sr(0.70344–0.70383) isotope ratios from the intrusive silicaterocks are more variable, and the Sr more radiogenic than thosefrom the carbonatites. Most of the Pb isotope data from Chilwa Island plot to the rightof the geochron and close to the oceanic regression line definedby MORBs and OIBs. Initial Pb isotopic ratios from both carbonatites(207Pb/204Pb 15.63–15.71; 206Pb/204Pb 19.13–19.78)and silicate rocks (207Pb/204Pb 15.61–15.72; 206Pb/204Pb18.18–20.12) show pronounced variations, and form twogroups in Pb-Pb plots. The isotopic variations shown by Nd, Pb, and Sr for the ChilwaIsland carbonatites and intrusive silicates suggest that thesemelts underwent different evolutionary histories. The chemicaldata, including isotopic ratios, from the carbonatites and olivinenephelinites are consistent with magmatic differentiation ofa carbonated-nephelinite magma. A model is proposed in whichdifferentiation of the carbonatite magma was accompanied byfenitization (metasomatic alteration) of the country rocks bycarbonatite-derived fluids, and subsequent alteration of thecarbonatite by hydrothermal activity. The chemical and isotopicdata from the non-nephelinitic intrusive silicate rocks reveala more complex evolutionary history, involving either selectivebinary mixing of lower-crustal granulites and a nephelinitemagma, or incremental batch melting of a depleted source andsubsequent crustal contamination.  相似文献   

16.
Late Cenozoic intraplate basaltic rocks in northeastern China have been interpreted as being derived from a mantle source composed of DMM and EM1 components. To constrain the origin of the enriched mantle component, we have now determined the geochemical compositions of basaltic rocks from the active Baekdusan volcano on the border of China and North Korea. The samples show LREE-enriched patterns, with positive Eu and negative Ce anomalies. On a trace element distribution diagram, they show typical oceanic island basalt (OIB)-like LILE enrichments without significant Nb or Ta depletions. However, compared with OIB, they show enrichments in Ba, Rb, K, Pb, Sr, and P. The Nb/U ratios are generally within the range of OIB, but the Ce/Pb ratios are lower than those of OIB. Olivine phenocrysts are characterized by low Ca and high Ni contents. The radiogenic isotopic characteristics (87Sr/86Sr = 0.70449 to 0.70554; εNd = −2.0 to +1.8; εHf = −1.7 to +6.1; 206Pb/204Pb = 17.26 to 18.12) suggest derivation from an EM1-like source together with an Indian MORB-like depleted mantle. The Mg isotopic compositions (δ26Mg = −0.39 ± 0.17‰) are generally lower than the average upper mantle, indicating carbonates in the source. The 87Sr/86Sr ratios decrease with decreasing δ26Mg values whereas the 143Nd/144Nd and (Nb/La)N ratios increase. These observations suggest the mantle source of the Baekdusan basalts contained at least two components that resided in the mantle transition zone (MTZ): (1) recycled subducted ancient (∼2.2–1.6 Ga) terrigenous silicate sediments, possessing EM1-like Sr–Nd–Pb–Hf isotopic signatures and relatively high values of δ26Mg; and (2) carbonated eclogites with relatively MORB-like radiogenic isotopic compositions and low values of δ26Mg. These components might have acted as metasomatizing agents in refertilizing the asthenosphere, eventually influencing the composition of the MTZ-derived plume that produced the Baekdusan volcanism.  相似文献   

17.
Recent statistical analyses on the isotopic compositions of oceanic, arc, and continental basalts have revealed that the Earth's mantle is broadly divided into eastern and western hemispheres. The present study aimed to characterize the isotopically defined east–west geochemical hemispheres using trace-element concentrations. Basalt data with Rb, Sr, Nd, Sm, Pb, Th, and U in addition to the isotopic ratios 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb were selected mostly from the GEOROC and PetDB databases. A total of 4787 samples were used to investigate the global geochemical variations. The results show that the wide trace-element variations are broadly explained by the melting of melt-metasomatized and fluid-metasomatized mantle sources. The larger amount of the fluid component derived from subducted plates in the eastern hemisphere than that in the western hemisphere is inferred from the basalts. These characteristics support the hypothesis that focused subduction towards the supercontinent created the mantle geochemical hemispheres.  相似文献   

18.
The geologic evolution of the New Zealand microcontinent was characterised by intermittent Cretaceous to Quaternary episodes of intraplate volcanism. To evaluate the corresponding mantle evolution beneath New Zealand with a specific focus on the tectonic evolution, we performed a combined major and trace element and Hf, Nd, Pb, Sr isotope investigation on a suite of representative intraplate volcanic rocks from both main islands and the Chatham Islands. Isotopically, the data set covers a range between “HIMU-like” end member compositions (206Pb/204Pb: 20.57, 207Pb/204Pb: 15.77, 87Sr/86Sr: 0.7030, εHf: + 3.8, εNd: + 4.2), compositions tending towards MORB (206Pb/204Pb: 19.01, 207Pb/204Pb: 15.62, 87Sr/86Sr: 0.7028, εHf: + 9.9, εNd: + 7.0) and compositions reflecting the influence of subducted sediments (206Pb/204Pb: 18.99, 207Pb/204Pb: 15.67, 87Sr/86Sr: 0.7037, εHf: + 4.4, εNd: + 3.9). Whereas volcanism on the Chatham Islands constitutes the HIMU end member of our data set, intraplate volcanic rocks from the North Island are dominated by MORB-like compositions with relatively radiogenic 206Pb/204Pb signatures. Volcanic rocks from the South Island form a trend between the three end members. Assuming a polybaric melting column model, the primary melt compositions reflect variations in the degree of melting, coupled to variable average melting depths. As the three isotope and trace element end members occur throughout the volcanic episodes, the “HIMU-like” and the sediment influenced signatures most likely originate from a heterogeneous subcontinental lithospheric mantle, whereas an asthenospheric origin is inferred for the MORB-like component. For the South Island, affinities to HIMU wane with decreasing average melting depths whereas MORB and sediment-like signatures become more distinct. We therefore propose a polybaric melting model involving upper asthenospheric mantle and a lithospheric mantle source that has been modified by subduction components and veins of fossil “HIMU-like” asthenospheric melts. The proportion of asthenospheric versus lithospheric source components is controlled by variations in lithospheric thickness and heat flow, reflecting the different tectonic settings and rates of extension. Generally, low degree melts preferentially tap enriched vein material with HIMU signatures. The widespread occurrence of old Gondwana-derived lithospheric mantle beneath intraplate volcanic fields in East Gondwana is suggested by overall similarities between New Zealand intraplate volcanic rocks and volcanic rocks in East Australia and Antarctica. The petrogenetic model proposed here may therefore serve as a general model for the petrogenesis of Cretaceous to Recent intraplate volcanic rocks in former East Gondwana. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Doklady Earth Sciences - The isotopic characteristics (εNd, 207Pb/206Pb, and 87Sr/86Sr) of the modern bottom sediments sampled in the Barents Sea during the 67th voyage of the R/V Akademik...  相似文献   

20.
In the Mediterranean area, lamproitic provinces in Spain, Italy, Serbia and Macedonia have uniform geological, geochemical and petrographic characteristics. Mediterranean lamproites are SiO2-rich lamproites, characterized by relatively low CaO, Al2O3 and Na2O, and high K2O/Al2O3 and Mg-number. They are enriched in LILE relative to HFSE and in Pb, and show depletion in Ti, Nb and Ta. Mediterranean lamproites show huge regional variation of Sr, Nd and 207Pb/204Pb isotopic values, with 87Sr/86Sr range of 0.707-0.722, εNd range from −13 to −3, and 207Pb/204Pb range of 15.62-15.79.Lamproitic rocks are derived from melts with three components involved in their origin, characterized by contrasting geochemical features which appear in 206Pb/204Pb, 87Sr/86Sr and 143Nd/144Nd space: (i) a mantle source contaminated by crustal material, giving rise to crust-like trace element patterns and radiogenic isotope systematics, (ii) an extremely depleted mantle characterized by very low whole-rock CaO and Al2O3, high-Fo olivine and Cr-rich spinel, which isotopically resembles European peridotitic massifs and lithospheric mantle; (iii) a component originating from the convecting mantle, characterized by unradiogenic 87Sr/86Sr and radiogenic 143Nd/144Nd and 206Pb/204Pb. These components demand multistage preconditioning of the lamproite-mantle source, involving an episode of extreme depletion, followed by involvement of terrigenous sediments, and finally interaction with melts originating from the convecting mantle, some of which are probably carbonatitic.We use our data on Mediterranean lamproites to characterize the mantle composition under the whole Alpine-Himalaya belt. Lamproites are an integral part of postcollisional volcanism, and are the most extreme melting products from a mantle which is ubiquitously crustally metasomatized. Enriched isotope signatures in Himalayan volcanics can also be explained by the involvement of subducted sediments instead of by proterozoic mantle lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号