首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
During the Saharan Mineral Dust Experiment (SAMUM) conducted in summer 2006 in southeast Morocco, the complex refractive index of desert dust was determined from airborne measurements of particle size distributions and aerosol absorption coefficients at three different wavelengths in the blue (467 nm), green (530 nm) and red (660 nm) spectral regions. The vertical structure of the dust layers was analysed by an airborne high spectral resolution lidar (HSRL). The origin of the investigated dust layers was estimated from trajectory analyses, combined with Meteosat 2nd Generation (MSG) scenes and wind field data analyses. The real part n of the dust refractive index was found almost constant with values between 1.55 and 1.56, independent of the wavelength. The values of the imaginary part k varied between the blue and red spectral regions by a factor of three to ten depending on the dust source region. Absolute values of k ranged from 3.1 × 10−3 to 5.2 × 10−3 at 450 nm and from 0.3 × 10−3 to 2.5 × 10−3 at 700 nm. Groupings of k values could be attributed to different source regions.  相似文献   

2.
In situ measurements of optical and physical properties of mineral dust were performed at the outskirts of the Saharan Desert in the framework of the Saharan Mineral Dust Experiment part 1 (SAMUM-1). Goals of the field study were to achieve information on the extent and composition of the dust particle size distribution and the optical properties of dust at the ground. For the particle number size distribution, measured with a DMPS/APS, a size dependent dynamic shape factor was considered. The mean refractive index of the particles in this field study is  1.53–4.1 × 10−3 i   at 537 nm wavelength and  1.53–3.1 × 10−3 i   at 637 nm wavelength derived from measurements of scattering and absorption coefficients, as well as the particle size distribution. Whereas the real part of the refractive index is rather constant, the imaginary part varies depending on the mineral dust concentrations. For high dust concentration the single scattering albedo is primarily influenced by iron oxide and is  0.96 ± 0.02  and  0.98 ± 0.01  at 537 nm and 637 nm wavelength, respectively. During low dust concentration the single scattering albedo is more influenced by a soot-type absorber and is  0.89 ± 0.02  and  0.93 ± 0.01  for the same wavelengths.  相似文献   

3.
This paper reports on the analysis of 24-h aerosol data measured during 2006, at 14 monitoring sites in China. Measurements included seven-wavelength Aethalometers, thermal/optical reflectance analyses of filter samples and determination of dust aerosols. Black (elemental) carbon (BC, EC) is found to be the principal light-absorbing aerosol over many parts of China; however, the fraction of apparent light absorption attributed to dust varied from 14% in winter, to 11% in spring, to 5% in summer to 9% in autumn. Aerosol light absorption in urban areas was larger than in rural areas by factors of 2.4 in winter, 3.1 in spring and 2.5 in both summer and autumn. These differences may lead to contrasts in radiative, thermal and cloud modification effects between urban and rural areas. Absorption 'hotspots' were located in the Sichuan Basin, the provinces south of Beijing, the Pearl Delta River regions and the Guanzhong Plain. The mass absorption coefficient for aerosol BC (σBC) based on Aethalometer data is estimated to be 11.7 m2 g−1 at 880 nm wavelength (λ) with inverse (λ−1) wavelength scaling, whereas the mass absorption coefficient for dust (σdust) is 1.3 m2 g−1 on average without significant wavelength dependence.  相似文献   

4.
The dominant sink of atmospheric molecular hydrogen (H2) is its enzymatic destruction in soils. Quantitative estimates of the global sink strength, as derived from bottom-up process studies, are, however, still associated to large uncertainties. Here we present an alternative way to estimate atmosphere-to-soil flux densities, respectively deposition velocities of H2, based on atmospheric H2 and 222Rn observations in the boundary layer. Two and a half years of continuous measurements from a polluted site in the Rhine-Neckar area have been evaluated and night-time flux densities were calculated for situations of strong nocturnal boundary layer inversions using the Radon-Tracer Method. The influences from local anthropogenic combustion sources could be detected and successfully separated by parallel measurements of carbon monoxide. Inferred daily uptake fluxes in the Heidelberg catchment area range from 0.5 to 3 × 10−8 g H2 m−2 s−1 with a mean value of (1.28 ± 0.31) × 10−8 g H2 m−2 s−1. Uptake rates are about 25% larger during summer than during winter, when soil moisture is high, and diffusive transport of H2 into the soil is inhibited. The mean deposition velocity is 3.0 ± 0.7 × 10−2 cm s−1, which is very well in line with direct measurements on similar soil types in Europe and elsewhere.  相似文献   

5.
An aerosol dynamics model, AEROFOR2, is developed in the context of the BIOFOR project focussing on boreal forest aerosol. It is the second version of a Lagrangian type box model AEROFOR for investigating the formation and growth of particles under clear sky atmospheric conditions. Particles can consist of soluble and insoluble material and the particle population can be externally or internally mixed. AEROFOR2 includes gas phase chemistry and aerosol dynamics, and calculates the number and composition distributions of particles as functions of time. Observed growth rates of the nucleation mode particles after a typical nucleation event are 2–3 nm/h. The model simulations predict that 3·107 molecules cm−3 of insoluble organic vapour and less than 6·106 molecules cm−3 of soluble vapour condensing onto particles are enough to make them grow in good agreement with the observed growth rates. Then the source rate of the organic vapour must be an order of 105 molecules cm−3 s−1, and its saturation vapour density should be below 106 molecules cm−3. If the aerosol was initially an internal mixture of soluble (70%) and insoluble (30%) constituents it transformed to an externally mixed aerosol during the simulation. By applying the externally‐mixed aerosol based on measured soluble volume fractions, it was concluded that the modelled soluble fraction of the nucleation mode was too low in comparison with the measurements, and thus, a part of the condensable organic vapour must be water soluble.  相似文献   

6.
Aerosol properties of mineral particles in the far field of an African desert dust outbreak were investigated that brought Saharan dust over the Mediterranean in different layers to Portugal. The measurements were performed inside the project Desert Aerosols over Portugal (DARPO) which was linked to the Saharan Mineral Dust Experiment (SAMUM). The maximum particle mass concentration was about 150 μg m−3 and the corresponding scattering coefficient was 130 M m−1 which results in a mass scattering efficiency of 0.87 m2 g−1. The aerosol optical depth reached values up to 0.53 and the lidar ratio was between 45 and 50 in the whole dust loaded column. A comparison between particle size distributions and refractive indices derived from different instruments and models showed a general good agreement but some minor differences could also be observed. Measurements as well as calculations with a particle transport model suggest that there is a relatively higher concentration of very large particles in the upper region of the dust layer than on the surface which is likely connected with meteorological conditions at the observational site (Évora, Portugal).  相似文献   

7.
Using 5 yr (December 2000–November 2005) of satellite data from the clouds and the earths radiant energy system (CERES) and moderate resolution imaging spectroradiometer (MODIS), we examine the instantaneous short-wave radiative efficiency ( Eτ ) of aerosols during the morning Terra satellite overpass time over the global oceans (60°N–60°S). We calculate Eτ using two commonly used methods. The first method uses the MODIS aerosol optical thickness (AOT) at 0.55 μm with radiative transfer calculations, whereas the second method utilizes the same AOT values along with a new generation of aerosol angular distribution models to convert the CERES-measured broad-band radiances to fluxes. Over the 5 yr, the global mean instantaneous Eτ between the methods is remarkably consistent and within 5 W m−2τ−1 with a mean value of –70 W m−2τ−1. The largest differences between the methods occur in high-latitude regions, primarily in the Southern Hemisphere, where AOT is low. In dust dominated regions, there is an excellent agreement between the methods with differences of <3 W m−2τ−1. These differences are largely due to assumptions in aerosol models and definition of clear sky backgrounds. Independent assessments of aerosol radiative effects from different satellite sensors and methods are extremely valuable and should be used to verify numerical modelling simulations.  相似文献   

8.
Concentrations of organic carbon (OC), elemental carbon (EC), selected trace elements and water-soluble (WS) ions were determined for samples collected from August 2004 to February 2005 to assess the aerosol background at two remote sites in China. The OC and EC concentrations in PM10 from near the Tibetan Plateau at Zhuzhang (ZUZ) were comparable with other background sites, averaging 3.1 and 0.34 μg m−3, respectively, with no pronounced seasonality. At Akdala (AKD) on northern margin of the Zhungaer Basin, the average concentrations were similar (mean OC = 2.9 μg m−3 and EC = 0.35 μg m−3), but the concentrations were higher in winter. The aerosol mass at both sites was dominated by OC and SO42−, but a stronger contribution from soil dust was observed at AKD. At ZUZ, NO3 showed a unique weather-related fluctuation in PM10 with a periodicity of ∼1 week. Anthropogenic sources in the Sichuan Basin and southeastern Yunnan Province evidently influence ZUZ in summer and autumn while pollutants from Russia and the China–Mongolia border affect AKD nearly all year. The identification of these upwind sources demonstrates that transboundary transport needs to be taken into account when assessing air quality in remote parts of China.  相似文献   

9.
The Optical Transient Detector (OTD) lightning data for the 12‐month period of 1996 are used to estimate the seasonal and global distributions of lightning‐produced NO x . The relatively small viewing footprint and the low detection efficiency of the OTD sensor and other difficulties require extrapolations of the OTD data to the actual global flash distributions. Furthermore, available measurements for the ratios of intracloud (IC) to cloud‐to‐ground (CG) flashes have been used to partition lightning counts for IC versus CG flashes from the OTD observations. The resulting lightning distributions are then used to calculate the global and seasonal production of NO x , assuming a NO production rate of 6.2×1025 molecules for each CG flash and 8.7×1024 molecules for each IC flash. Consequently, we find that CG flashes produce more NO x than IC flashes despite fewer CG flashes by a factor of 3 or more. NO x production by lightning varies seasonally in accordance with the global lightning distribution, with the maximum production occurring in the Northern Hemisphere in the local summer. The latitudinal distribution of NO x production exhibits a strong seasonal variation outside the tropics with the production occurring mainly in the summer hemisphere, whereas in the tropics the production is high throughout the year. The annual contribution to NO x production by lightning is higher in the Northern Hemisphere than that in the Southern Hemisphere.  相似文献   

10.
Enclosure measurements have been performed on a bare mineral soil at an experimental field site near Heidelberg, Germany. From observed molecular hydrogen (H2) mixing ratio changes in the enclosure, deposition velocities were calculated ranging from  8.4 × 10−3  to  8.2 × 10−2 cm s−1  and with an annual mean value of  3.1 × 10−2 cm s−1  . In the studied range of  2– 27 °C  , the uptake showed a significant temperature dependence. However, this turned out not to be the primary driving mechanism of the uptake flux. Soil moisture content, co-varying with temperature, was identified as the major parameter being responsible for the diffusive permeability of H2 in the soil and the final rate of H2 uptake. A simple Millington–Quirk diffusion model approach could largely explain this behaviour and yielded a diffusion path length of H2 in the studied soil of only 0.2–1.8 cm, suggesting that total H2 consumption occurs within the first few centimetres of the soil. The diffusion model, when applied to continuous measurements of soil moisture content, atmospheric pressure, temperature and the mixing ratio of H2 in the atmosphere, could largely reproduce the measured deposition flux densities, assuming a mean thickness of the diffusion path length of 0.7 cm.  相似文献   

11.
The amounts of microbial and root‐respired CO2 in a maize/winter wheat agricultural system in south western Germany were investigated by measurements of the CO2 mixing ratio and the 13C/12C ratio in soil air. CO2 fluxes at the soil surface for the period of investigation (1993–1995) were also determined. Root respired CO2 shows a strong correlation with the plant mass above ground surface of the respective vegetation (R2≥0.88); the maximum CO2 release from roots was in August for the maize (2.0±0.5 mmol m−2 h−1) and in June for winter wheat (1.5±0.5 mmol m−2 h−1). Maximum CO2 production by roots correlate well with the maximum amount of plant root matter. Integrating the CO2 production over the whole growing season and normalizing to the dry root matter yields, the CO2 production per gram dry organic root matter (DORM) of maize was found to be 0.14±0.03 gC (g DORM)−1. At the sites investigated, root‐produced CO2 contributed (16±4)% for maize, and (24±4)% for winter wheat, respectively, to the total annual CO2 production in the soil (450±50 gC m−2 for maize, 210±30 gC m−2 for winter wheat).  相似文献   

12.
The major finding of this study is that aerosols over the tropical Indian Ocean enhance clear sky atmospheric solar heating significantly and decrease the surface solar heating by even a larger amount. The results presented here are based on aerosol chemical, microphysical, and optical and radiometric data collected at the island of Kaashidhoo (4.97°N, 73.47°E) during February and March of 1998, as part of the first field phase of the Indian Ocean experiment (INDOEX). The aerosol optical properties were integrated with a multiple scattering Monte Carlo radiative transfer model which was validated at the surface with broadband flux measurements and at the top of the atmosphere (TOA) with the clouds and earth's radiant energy system (CERES) radiation budget measurements. We consider both externally and internally mixed aerosol models with very little difference between the two models in the estimated forcing. For the February–March period, the aerosols increase the monthly mean clear sky atmospheric solar heating by about 12 W/m2(about 15% of the total atmospheric solar heating) and decrease the sea surface clear sky solar heating by about 16 W/m2 with a daily range from 5 to 23 W/m2. The net aerosol forcing at the top of the atmosphere is about −4 W/m2 with a daily range from −2 to −6 W/m2. Although the soot contributes only about 10% to the aerosol optical thickness, it contributes more than 50% to the aerosol induced atmospheric solar heating. The fundamental conclusion of this study is that anthropogenic aerosols over the tropical Indian Ocean are altering the clear sky radiation budget of the atmosphere and surface in a major manner.  相似文献   

13.
During the 1st Lagrangian experiment of the North Atlantic Regional Aerosol Characterisation Experiment (ACE‐2), a parcel of air was tagged by releasing a smart, constant level balloon into it from the Research Vessel Vodyanitskiy . The Meteorological Research Flight's C‐130 aircraft then followed this parcel over a period of 30 h characterising the marine boundary layer (MBL), the cloud and the physical and chemical aerosol evolution. The air mass had originated over the northern North Atlantic and thus was clean and had low aerosol concentrations. At the beginning of the experiment the MBL was over 1500 m deep and made up of a surface mixed layer (SML) underlying a layer containing cloud beneath a subsidence inversion. Subsidence in the free troposphere caused the depth of the MBL to almost halve during the experiment and, after 26 h, the MBL became well mixed throughout its whole depth. Salt particle mass in the MBL increased as the surface wind speed increased from 8 m s−1 to 16 m s−1 and the accumulation mode (0.1μm to 3.0 μm) aerosol concentrations quadrupled from 50 cm−3 to 200 cm−3. However, at the same time the total condensation nuclei (>3 nm) decreased from over 1000 cm−3 to 750 cm−3. The changes in the accumulation mode aerosol concentrations had a significant effect on the observed cloud microphysics. Observational evidence suggests that the important processes in controlling the Aitken mode concentration which, dominated the total CN concentration, included, scavenging of interstitial aerosol by cloud droplets, enhanced coagulation of Aitken mode aerosol and accumulation mode aerosol due to the increased sea salt aerosol surface area, and dilution of the MBL by free tropospheric air.  相似文献   

14.
Many researchers have reported the widespread occurrence of excess 210 Po in the global atmosphere and suggested probable sources such as resuspension of top soils, stratospheric aerosols, sea spray of the surface micro‐layer, volcanic emission, and bio‐volatile 210Po species from the productive ocean. We have observed excess 210Po on aerosols in the coastal atmosphere of the Chesapeake and Delaware Bays. On‐board measurements in the Chesapeake Bay atmosphere show that the increase of this excess 210Po is dependent upon wind speed. Simultaneously measured activity ratios of 7Be/210Pb and 210Pb/222Rn argue against either higher altitude air or continental soils as the source of this excess. We hypothesize that the excess 210Po originates mainly from surface waters either by the sea‐spray of the surface microlayer, or more likely, by gas exchange. We conclude gas exchange as the mechanism since the polonium excess increases linearly with wind speed over a threshold of 3 m s−1(mean) similar to other gases (i.e., CO2, SF6 , and DMS). In addition, higher 210Po excess with lower 222Rn is observed in on‐shore marine air at Lewes, DE. This suggests sea‐air exchange of volatile Po along with other bio‐volatile species (i.e., DMS, DMSe, and MMHg) in the coastal productive ocean during high wind speeds.  相似文献   

15.
利用地面大气颗粒物质量浓度观测资料、探空和NECP再分析资料以及地面激光雷达探测资料,对2021年3月13—15日沈阳地区污染事件过程展开分析,探讨大气污染物质量浓度、大气环流背景与气溶胶垂直分布等特征。结果表明: 3月13日PM2.5质量浓度最高值出现在06:00—07:00,约为220.0—230.0 μg·m-3,15日12:00开始显著降低,而PM10质量浓度在15:00出现显著增加,为258.3 μg·m-3。SO2和NO2浓度较高值均出现在3月13日10:00时左右,分别为40.1 μg·m-3和101.3 μg·m-3。CO质量浓度最高值出现在13日16:00—17:00,约为8.8 mg·m-3。沈阳地区臭氧的最高值均出现在午后,13日和14日午后(12:00—16:00)臭氧最大值为102.4—113.7 μg·m-3。蒙古气旋东移过程中逐渐发展加强,其后部西北风将沙尘向东南方向输送。沈阳地区沙尘发展旺盛时存在不稳定层结,同时伴有显著的上升运动,有利于沙尘粒子的垂直混合和向下游输送。3月15日02:00(北京时间15日10:00)气溶胶消光最大值出现在0.7 km处,消光系数约为6.0 km-1。近地面激光雷达退偏比显著增加至0.4—0.5,近地面以非球形粒子(粗颗粒物)为主的沙尘或浮尘。  相似文献   

16.
The impacts of optical properties on radiative forcing due to dust aerosol   总被引:3,自引:1,他引:2  
There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity experiments to estimate the impacts of optical characteristics on regional radiative forcing in this paper. The experiments involve in refractive indices, single scattering aibedo, asymmetry factor and optical depth. An updated dataset of refractive indices representing East Asian dust and the one recommended by the World Meteorology Organization (WMO) are contrastively analyzed and used. A radiative transfer code for solar and thermal infrared radiation with detailed aerosol parameterization is employed. The strongest emphasis is on the refractive indices since other optical parameters strongly depend on it, and the authors found a strong sensitivity of radiative forcing on refractive indices. Studies show stronger scattering, weaker absorption and forward scattering of the East Asian dust particles at solar wavelengths, which leads to higher negative forcing, lower positive forcing and bigger net forcing at the top of the atmosphere (TOA) than that of the WMO dust model. It is also found that the TOA forcings resulting from these two dust models have opposite signs in certain regions, which implies the importance of accurate measurements of optical properties in the quantitative estimation of radiative forcing.  相似文献   

17.
Long-term measurements of fine particle number-size distributions were carried out over 9.5 yr (May 1997–December 2006), in the urban background atmosphere of Helsinki. The total number of days was 3528 with about 91.9% valid data. A new particle formation event (NPF) is defined if a distinct nucleation mode of aerosol particles is observed below 25 nm for several hours, and it shows a growth pattern. We observed 185 NPF events, 111 d were clear non-events and most of the days (around 83.5%) were undefined. The observed events were regional because they were observed at Hyytiälä (250 km north of Helsinki). The events occurred most frequently during spring and autumn. The observed formation rate was maximum during the spring and summer (monthly median 2.87 cm−3 s−1) and the modal growth rate was maximum during late summer and Autumn (monthly median 6.55 nm h−1). The events were observed around noon, and the growth pattern often continued on the following day. The observation of weak NPF events was hindered due to pre-existing particles from both local sources. It is clear that regional NPF events have a clear influence on the dynamic behaviour of aerosol particles in the urban atmosphere.  相似文献   

18.
Three ground-based Raman lidars and an airborne high-spectral-resolution lidar (HSRL) were operated during SAMUM 2006 in southern Morocco to measure height profiles of the volume extinction coefficient, the extinction-to-backscatter ratio and the depolarization ratio of dust particles in the Saharan dust layer at several wavelengths. Aerosol Robotic Network (AERONET) Sun photometer observations and radiosoundings of meteorological parameters complemented the ground-based activities at the SAMUM station of Ouarzazate. Four case studies are presented. Two case studies deal with the comparison of observations of the three ground-based lidars during a heavy dust outbreak and of the ground-based lidars with the airborne lidar. Two further cases show profile observations during satellite overpasses on 19 May and 4 June 2006. The height resolved statistical analysis reveals that the dust layer top typically reaches 4–6 km height above sea level (a.s.l.), sometimes even 7 km a.s.l.. Usually, a vertically inhomogeneous dust plume with internal dust layers was observed in the morning before the evolution of the boundary layer started. The Saharan dust layer was well mixed in the early evening. The 500 nm dust optical depth ranged from 0.2–0.8 at the field site south of the High Atlas mountains, Ångström exponents derived from photometer and lidar data were between 0–0.4. The volume extinction coefficients (355, 532 nm) varied from 30–300 Mm−1 with a mean value of 100 Mm−1 in the lowest 4 km a.s.l.. On average, extinction-to-backscatter ratios of 53–55 sr (±7–13 sr) were obtained at 355, 532 and 1064 nm.  相似文献   

19.
利用AERONET观测资料从气候学的角度比较分析了2001-2011年东亚地区沙尘天气发生时沙尘源区和下游区大气气溶胶光学特性。结果表明:沙尘期间沙尘源区气溶胶光学厚度明显大于下游区,而Angstr?m波长指数却小于下游区,当沙尘暴出现时会降至零甚至负值。气溶胶粒子尺度体积谱分布除敦煌为单峰外,其余各站均呈双峰分布,香河和北京的细粒子浓度明显大于西北地区,这可能是由细的沙尘粒子和污染气溶胶共同造成。在440-1020 nm范围内,中国地区气溶胶单次散射反照率平均值为0.93,韩国和日本站分别为0.93和0.94。沙尘源区与下游区相比,复折射指数实部偏大,虚部偏小。总体来说,沙尘天气下东亚地区在4个波段内平均不对称因子为0.70。  相似文献   

20.
The atmospheric sulfur cycle of the remote Arctic marine boundary layer is studied using trajectories and measurements of sulfur compounds from the International Arctic Ocean Expedition 1991, along with a pseudo-Lagrangian approach and an analytical model. The dimethyl sulfide [DMS(g)] turnover time was  h. Only  % of DMS(g) followed reaction paths to sulfur dioxide [SO2(g)], sub-micrometre aerosol non-seasalt sulfate (nss-SO42−) or methane sulfonate (MSA). During the first 3 d of transport over the pack ice, fog deposition and drizzle resulted in short turnover times;  h for SO2(g),  h for MSA and  h for nss-SO42−. Therefore, DMS(g) will, owing to its origin along or south of the ice edge and longer turnover time, survive the original sub-micrometre sulfur aerosol mass and gradually replace it with new biogenic sulfur aerosol mass. The advection of DMS(g) along with heat and moisture will influence the clouds and fogs over the Arctic pack ice through the formation of cloud condensation nuclei (CCN). If the pack ice cover were to decrease owing to a climate change, the total Arctic Ocean DMS production would change, and potentially there could be an ice–DMS–cloud–albedo climate feedback effect, but it would be accompanied by changes in the fog aerosol sink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号