首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
This study compares the seasonal and interannual-to-decadal variability in the strength and position of the Kuroshio Extension front(KEF) using high-resolution satellite-derived sea surface temperature(SST) and sea surface height(SSH) data. Results show that the KEF strength has an obvious seasonal variation that is similar at different longitudes, with a stronger(weaker) KEF during the cold(warm) season. However, the seasonal variation in the KEF position is relatively weak and varies with longitude. In contrast, the low-frequency variation of the KEF position is more distinct than that of the KEF strength even though they are well correlated. On both seasonal and interannual-to-decadal time scales, the western part of the KEF(142°–144°E) has the greatest variability in strength, while the eastern part of the KEF(149°–155°E) has the greatest variability in position. In addition, the relationships between wind-forced Rossby waves and the low-frequency variability in the KEF strength and position are also discussed by using the statistical analysis methods and a wind-driven hindcast model. A positive(negative) North Pacific Oscillation(NPO)-like atmospheric forcing generates positive(negative) SSH anomalies over the central North Pacific. These oceanic signals then propagate westward as Rossby waves, reaching the KE region about three years later, favoring a strengthened(weakened) and northward(southward)-moving KEF.  相似文献   

2.
The in situ sea surface salinity(SSS) measurements from a scientific cruise to the western zone of the southeast Indian Ocean covering 30°–60°S, 80°–120°E are used to assess the SSS retrieved from Aquarius(Aquarius SSS).Wind speed and sea surface temperature(SST) affect the SSS estimates based on passive microwave radiation within the mid- to low-latitude southeast Indian Ocean. The relationships among the in situ, Aquarius SSS and wind-SST corrections are used to adjust the Aquarius SSS. The adjusted Aquarius SSS are compared with the SSS data from My Ocean model. Results show that:(1) Before adjustment: compared with My Ocean SSS, the Aquarius SSS in most of the sea areas is higher; but lower in the low-temperature sea areas located at the south of 55°S and west of 98°E. The Aquarius SSS is generally higher by 0.42 on average for the southeast Indian Ocean.(2) After adjustment: the adjustment greatly counteracts the impact of high wind speeds and improves the overall accuracy of the retrieved salinity(the mean absolute error of the Zonal mean is improved by 0.06, and the mean error is-0.05 compared with My Ocean SSS). Near the latitude 42°S, the adjusted SSS is well consistent with the My Ocean and the difference is approximately 0.004.  相似文献   

3.
High resoultion Eulerian mean velocity field has been derived by combining the satellite tracked surface drifter data with satellite altimetry and ocean surface winds. The drifter data used in this study includes Argos and surface drifter data from Global Drifter Program. Maps of Sea Level Anomaly(MSLA) weekly files with a resolution of(1/3)° in both Latitude and Longitude for the period 1993–2012 have been used. The Ekman current is computed using ocean surface mean wind fields from scatterometers onboard ERS 1/2,Quikscat and ASCAT. The derived mean velocity field exhibits the broad flow of Antarctic Circumpolar Current with speeds up to 0.6 m/s.Anomalous field is quite significant in the western part between 20° and 40°E and in the eastern part between 80°E and 100°E with velocity anomaly up to 0.3 m/s. The estimated mean flow pattern well agrees with the dynamic topography derived from in-situ observations. Also,the derived velocity field is consistent with the in-situ ADCP current measurements. Eddy kinetic energy illustrates an increasing trend during 1993–2008 and is in phase coherence with the Southern Annular Mode by three month lag. Periodic modulations are found in the eddy kinetic energy due the low frequency Antarctic Circumpolar Wave propagation.  相似文献   

4.
冬季黑潮延伸体海表温度对阿留申低压活动的双周期响应   总被引:1,自引:1,他引:0  
Based on our previous work, the winter sea surface temperature(SST) in the Kuroshio Extension(KE) region showed significant variability over the past century with periods of ~6 a between 1930 and 1950 and ~10 a between1980 and 2009. How the activity of the Aleutian Low(AL) induces this dual-period variability over the two different timespans is further investigated here. For the ~6 a periodicity during 1930–1950, negative wind stress curl(WSC)anomalies in the central subtropical Pacific associated with an intensified AL generate positive sea surface height(SSH) anomalies. When these wind-induced SSH anomalies propagate westwards to the east of Taiwan, China two years later, positive velocity anomalies appear around the Kuroshio to the east of Taiwan and then the mean advection via this current of velocity anomalies leads to a strengthened KE jet and thus an increase in the KE SST one year later. For the ~10 a periodicity during 1980–2009, a negative North Pacific Oscillation-like dipole takes2–3 a to develop into a significant positive North Pacific Oscillation-like dipole, and this process corresponds to the northward shift of the AL. Negative WSC anomalies associated with this AL activity in the central North Pacific are able to induce the positive SSH anomalies. These oceanic signals then propagate westward into the KE region after 2–3 a, favoring a northward shift of the KE jet, thus leading to the warming of the KE SST. The feedbacks of the KE SST anomaly on the AL forcing are both negative for these two periodicities. These results suggest that the dual-period KE SST variability can be generated by the two-way KE-SST-AL coupling.  相似文献   

5.
Statistical analysis about ENSO index represented by SSTA in Nino3 with several datasets shows obviously decadal changes in the dominant period and amplitude of ENSO. Correlation analysis about the composite E1 Nino events before and after 1976 exhibits obviously decadal changes in the propagation and intensity of the oceanic anomaly related to the variation of SSTA in Nino3. In the composite E1 Nino before 1976, the coherence is relatively weak between the oceanic anomaly in the tropical Pacific and the SSTA in the Nino3 region; the area with significant correlation coefficient is relatively small; the oceanic anomaly related to Nino3 SSTA propagates faster. The above changes correspond well to the decadal changes of ENSO cycles. Some preliminary explanations are given based on the analysis of the decadal changes in the thermocline. The tropical thermocline shoals after 1976 except in the equatorial far East Pacific and the inclination of the tropical thermocline deep west and shallow east patterns weakens. Much of the oceanic anomaly from the relative higher latitude contributes to the slow propagation of the oceanic anomaly in the North Pacific. The air-sea coupling in the tropical Pacific intensifies after 1976 corresponding to decadai change of the ENSO amplitude. Decadai adjustment of the thermocline may have influenced the propagation and intensity of the oceanic anomaly related to the ENSO and intensity of air-sea interaction in the tropical Pacific, and changed the dominant period of ENSO and its amplitude.  相似文献   

6.
In the past nearly two decades, the Argo Program has created an unprecedented global observing array with continuous in situ salinity observations, providing opportunities to extend our knowledge on the variability and effects of ocean salinity. In this study, we utilize the Argo data during 2004–2017, together with the satellite observations and a newly released version of ECCO ocean reanalysis, to explore the decadal salinity variability in the Southeast Indian Ocean(SEIO) and its impacts on the regional sea level changes. Both the observations and ECCO reanalysis show that during the Argo era, sea level in the SEIO and the tropical western Pacific experienced a rapid rise in 2005–2013 and a subsequent decline in 2013–2017. Such a decadal phase reversal in sea level could be explained, to a large extent, by the steric sea level variability in the upper 300 m. Argo data further show that, in the SEIO, both the temperature and salinity changes have significant positive contributions to the decadal sea level variations. This is different from much of the Indo-Pacific region, where the halosteric component often has minor or negative contributions to the regional sea level pattern on decadal timescale. The salinity budget analyses based on the ECCO reanalysis indicate that the decadal salinity change in the upper 300 m of SEIO is mainly caused by the horizontal ocean advection. More detailed decomposition reveals that in the SEIO, there exists a strong meridional salinity front between the tropical low-salinity and subtropical high salinity waters. The meridional component of decadal circulation changes will induce strong cross-front salinity exchange and thus the significant regional salinity variations.  相似文献   

7.
南海冬季海浪的时空变率特征   总被引:4,自引:1,他引:3  
The spatial and temporal variation characteristics of the waves in the South China Sea(SCS) in the boreal winter during the period of 1979/1980–2011/2012 have been investigated based on the European Centre for Medium-range Weather Forecasts interim(ERA-Interim) reanalysis dataset. The results show that the leading mode of significant wave height anomalies(SWHA) in the SCS exhibits significant interannual variation and a decadal shift around the mid-1990 s, and features a basin-wide pattern in the entire SCS with a center located in the west of the Luzon Strait. The decadal change from a weak regime to a strong regime is mainly associated with the enhancement of winter monsoon modulated by the Pacific decadal oscillation(PDO). The interannual variation of the SWHA has a significant negative correlation with the El Ni?o Southern Oscillation(ENSO) in the same season and the preceding autumn. For a better understanding of the physical mechanism between the SCS ocean waves and ENSO, further investigation is made by analyzing atmospheric circulation. The impact of the ENSO on the SWHA over the SCS is bridged by the East Asian winter monsoon and Pacific-East Asian teleconnection in the lower troposphere. During the El Ni?o(La Ni?a), the anomalous Philippine Sea anticyclone(cyclone) dominates over the Western North Pacific, helps to weaken(enhance) East Asian winter monsoon and then emerges the negative(positive) SWHA in the SCS.  相似文献   

8.
东海沿海季节性海平面异常成因   总被引:1,自引:0,他引:1  
Based on the analysis of sea level, air temperature, sea surface temperature(SST), air pressure and wind data during 1980–2013, the causes of seasonal sea level anomalies in the coastal region of the East China Sea(ECS) are investigated. The research results show:(1) sea level along the coastal region of the ECS takes on strong seasonal variation. The annual range is 30–45 cm, larger in the north than in the south. From north to south, the phase of sea level changes from 140° to 231°, with a difference of nearly 3 months.(2) Monthly mean sea level(MSL)anomalies often occur from August to next February along the coast region of the ECS. The number of sea level anomalies is at most from January to February and from August to October, showing a growing trend in recent years.(3) Anomalous wind field is an important factor to affect the sea level variation in the coastal region of the ECS. Monthly MSL anomaly is closely related to wind field anomaly and air pressure field anomaly. Wind-driven current is essentially consistent with sea surface height. In August 2012, the sea surface heights at the coastal stations driven by wind field have contributed 50%–80% of MSL anomalies.(4) The annual variations for sea level,SST and air temperature along the coastal region of the ECS are mainly caused by solar radiation with a period of12 months. But the correlation coefficients of sea level anomalies with SST anomalies and air temperature anomalies are all less than 0.1.(5) Seasonal sea level variations contain the long-term trends and all kinds of periodic changes. Sea level oscillations vary in different seasons in the coastal region of the ECS. In winter and spring, the oscillation of 4–7 a related to El Ni?o is stronger and its amplitude exceeds 2 cm. In summer and autumn, the oscillations of 2–3 a and quasi 9 a are most significant, and their amplitudes also exceed 2 cm. The height of sea level is lifted up when the different oscillations superposed. On the other hand, the height of sea level is fallen down.  相似文献   

9.
This paper is based on the data for the period from 1953 to 1977, which are the monthly averaged ice cover in the Arctic area within 160° E-110° W and north of 50?N, the areal index of the North Pacific subtropical high and the monthly averaged sea surface temperature of the North Pacific. A statistical analysis of the lag correlations between the polar ice from November to July and the sea surface temperature from January to July, and the sea surface temperature from January to July and the subtropical high lagging zero through eleven months is performed.The analysis shows that the lag correlation regions between the polar ice during spring and the sea surface temperature almost coincide with the regions of the California Current and the paitial north equatorial current, and the regions of the California Current and the partial north equatorial current coincide with the principal lag correlation regions between the sea surface temperature and the subtropical high. All the results suggest that the tra  相似文献   

10.
Calibrations between sodium (Na^+) concentrations from a Mt. Logan ice core and sea level pressure (SLP) series show that Na^+ concentrations are closely correlated with the autumn-time (September-October-November) Aleutian low (AleuLow). A deepening of the AleuLow strengthens the transport of sea-salt aerosols from the North Pacific to the Mt. Logan region. The Mt. Logan Na^+ record is used to develop a 292 a (1688-1979) reconstruction of the AleuLow revealing a dramatic intensification of atmospheric circulation over the North Pacific region since the 20th century. Mean SLP of the AleuLow was about 1 hPa lower during the 20th century than during prior periods. The strongest deepening of the AleuLow appeared in the 1950s. Significant correlations are also found between the Mt. Logan AleuLow proxy series and the Pacific decadal oscillation (PDO) and Pacific circulation (PC) index during the 20th century. Evolutionary spectral analysis of the proxy record shows significant periodicities from 15 to 30 a consistent with PDO fluctuations and the bidecadal oscillation of North Pacific atmosphere-ocean circulation. A period of 11 a in the AleuLow record may be associated with the Schwabe 11-a cycle of sunspot activity. Additional longer ice core records from this region will aid in the efforts to further understand the climatic change over the North Pacific region.  相似文献   

11.
The position and strength of the surface Kuroshio Extension Front (KEF), defined as the sea surface temperature (SST) gradient maximum adjacent to the Kuroshio Extension (KE) axis (approximated by a specific SSH contour consistently located at, or near, the maximum of the SSH gradient magnitude), have been studied using weekly, microwave SST measurements from the later 1997 to early 2008. The mean KEF meanders twice around ∼36°N between the east coast of Japan and 153°E. It then migrates southeast to ∼34°N, just before reaching the Shatsky Rise (∼158°E), then progresses mostly eastward. Spatially, the KEF is strongest near the Japan coast, while it is seasonally strongest in winter and weakest in summer. Low-frequency variations of its strength, most notably in its upstream region, can be related to the known bimodal states of the KE. During 2003–2005, when the KE was in its stable state, the winter KEF SST gradient exceeded 10°C/100 km.  相似文献   

12.
采用来自大洋环流模式ECCO2 (the estimating the circulation and climate of the ocean, phase II project)的再分析数据对1992—2019年北太平洋副热带西部模态水(subtropical mode water, STMW)的年代际变化特征及机制进行了分析。结果表明:STMW形成体积具有显著的年代际变化,于1992—1997年、2000—2005年和2011—2017年期间为正异常,而于1998—1999年和2006—2010年期间为负异常,由晚冬生成区混合层体积的年代际变化引起。STMW形成厚度和面积均呈现类似的年代际变化。合成分析表明, STMW形成体积正异常期间,黑潮延伸体上游南侧STMW生成区,海表涡动能相对负异常期间减小,同时预先层结相对负异常期间减弱,并伴随着海表高度异常。通过混合层收支分析发现,混合层形成体积年代际变化与海洋预先层结调控的混合层底卷吸作用变化同步且大小相当,而与海气形成率变化无关。增强(减弱)的海洋预先层结通过调控STMW形成区冬季混合层底卷吸过程,阻碍(促进)冬季混合层加深,最终使得STMW形成体积减少(增加)。进一步分析表明, STMW形成体积年代际变化受与太平洋年代际涛动相关的风应力旋度异常的远场调控。  相似文献   

13.
Decadal variations of the transport and bifurcation latitude of the North Equatorial Current (NEC) in the northwestern tropical Pacific Ocean over 1959–2011 are investigated using outputs of the Ocean Analysis/Reanalysis System 3 prepared by the European Centre for Medium-Range Weather Forecasts. The results indicate that the NEC transports at different longitudes have different decadal fluctuations, which are strongest around 139°E. The NEC bifurcation latitude (NBL) has its largest decadal variations around 150 m. Extremes of the decadal NEC transport and NBL before 1975 correspond to different circulation anomalies from those after 1975. The regression map against decadal NBL exhibits negative sea surface height (SSH) anomalies and a cyclonic gyre anomaly over the northwestern tropical Pacific Ocean, while that against the decadal NEC transport exhibits a dipole structure, with positive/negative SSH anomalies to the north/south of about 13°N. Furthermore, decadal variations of the NEC transport and NBL over the whole period have different correlations with Pacific Decadal Oscillation (PDO) and Tropical Pacific Decadal Variability (TPDV). Generally, the decadal NEC transport shows higher correlations with PDO than with TPDV, while the NBL has higher correlations with TPDV than with PDO. The high correlation of decadal NEC transport with PDO mainly comes from that of its northern branch with PDO, while its southern branch shows higher correlation with TPDV.  相似文献   

14.
本文利用1993-2015年AVISO卫星高度计融合数据,统计分析了从黑潮延伸体流轴脱落涡旋的空间分布特征、运动属性以及季节、年际和类年代际变化。研究结果表明,23年间共追踪到242个气旋涡,276个反气旋涡,脱落的涡旋主要分布在沙茨基海隆以西区域。从脱落涡旋的源地空间分布来看,气旋涡的形成区域有两个高值区,一个位于黑潮延伸体流轴稳定弯曲处,即144°~146°E之间的上游区域;另一个位于沙茨基海隆西侧156°E处。而反气旋涡的形成区域也有两个高值区,一个位于沙茨基海隆以西的下游区域,另一个位于148°E处。这些在上游和下游脱落的涡旋大多向西移动,其中有88%的涡旋再次被流轴吸收。脱落涡旋的数量显示出了明显的年际和类年代际变化。在流轴的上下游区域,类年代际和年际变化分别占主导地位。并且在上游区域,脱落涡旋的类年代际变化与黑潮延伸体的强度呈负相关。在季节变化上,夏季脱落形成的涡旋最多,冬季最少。  相似文献   

15.
By using the NCEP/NCAR reanalysis data sets for 1951–2001, we study the characteristics of Pacific cyclones. It is shown that the northeast-southwest direction is predominant in the displacements of cyclones in the North Pacific. We study the variability of the field of surface atmospheric pressure in different phases of the Pacific decadal oscillation characterizing the temperature anomalies on the surface of the ocean in the region bounded by 20 and 60°N. It is shown that the decadal variations of the North Atlantic Oscillation supported by the large-scale anomalies of the Pacific decadal oscillation is the most important cause of natural decadal oscillations in the European region. We study and evaluate the regional response to the Pacific decadal oscillation by using, as an example, the analysis of variations of the discharge of European rivers. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 13–23, July–August, 2007.  相似文献   

16.
This paper aims to analyse acoustic-propagation character in the front area of Kuroshio Extension (KE). By analysing Argo data and the Sea surface height (SSH) data in this KEF area, a two-dimensional (2D) sound-speed feature model (SSPFM) characterising the KEF is proposed. The SSPFM has a transition zone with a width about 100 km and the sound channel changes from 1000 m south of KEF to 300 m north of KEF, resulting in a sharp gradient about 7 m/km. Along with the meandering character of the KEF axis, the sharp gradient results in a rather complicated acoustic environment in the KEF area. With reanalysis data from the hybrid coordinate ocean model, a three-dimensional (3D) sound-speed environment is established. The acoustic propagation character in the KEF area is then analysed with the 2D SSPFM and the 3D acoustic environment. Results show that the KEF affects acoustic propagation mainly by modifying the sound channel depth. Given that acoustic propagation in the KEF area is influenced mainly by the meandering KEF, with the near-real-time SSH data to locate the KEF, the 2D SSPFM is able to provide a near-real-time estimate of the underwater 3D acoustic environment.  相似文献   

17.
INTRODUCTIONBeing a current of high temperature and high salinity, the Kuroshio carries a large amount ofheat from low latitude tropical ocean to high latitude ocean, and plays an imPOrtant role in theheat balance in East Asia. The variability of the Kurosl,io can affect the climate of East Asia, aswell as the ocean environment and the fishery resources. A lot of studies showed that the variabilitiies of the Kuroshio were related to the global changes especially to the onset of ENSO.…  相似文献   

18.
对一个6层5°×4°网格的全球海洋模式作了一些改进,建立了10层5°×4°网格的全球海洋模式,进行了季节变化数值模拟,积分250a,取得稳定的结果.除了高纬度海洋外,模拟的季节变化与实际观测十分接近.在此基础上,作了热带太平洋海温场对热带季风异常响应的3组敏感性实验,第1组为赤道西太平洋异常西风向东传播的试验;第2组为整个赤道太平洋风应力振荡异常试验;第3组为赤道西太平洋异常西风、东风交替向东传播的敏感性试验.模拟结果表明:(1)第1组风应力敏感性实验结果揭示出,西太平洋西风异常的向东传播的风应力异常可以产生类似厄尔尼诺的赤道东太平洋变暖;(2)第2组试验结果表明,热带太平洋风应力的局地振荡首先在中太平洋东西部激发出海温扰动,然后海温扰动分别向东太平洋和西太平洋传播,从而引起东、西太平洋海温的异常;(3)第3组试验验证风应力QBO可以产生海洋中类似的QBO振荡.  相似文献   

19.
In this paper, by analyzing the data of sea temperature in the Equatorial Western Pacific (EWP), we found that the sea temperature at sensitive district (WSST) (about at 6° N, depth of 125-150 m) is correlated negatively to the sea temperature in the Equatorial Eastern Pacific (EEP). On the basis of basic characteristics of Equatorial Pacific atmosphere and ocean, we designed a simple air-sea coupled model. Using this model,an ocean circulation was simulated. The east-west oscillation of sea temperature in Equatorial Pacific is related to this ocean circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号