首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
青藏高原中段渐新世逆冲推覆构造   总被引:2,自引:0,他引:2       下载免费PDF全文
青藏高原中段渐新世发育大规模逆冲推覆构造,在地块边界与汇聚部位形成大型逆冲推覆构造体系,典型实例如东昆仑南部逆冲推覆构造系统、羌塘地块北侧逆冲推覆构造系统、伦坡拉—安多—索县逆冲推覆构造系统、冈底斯逆冲推覆构造系统、喜马拉雅山脉主中央逆冲系。大部分逆冲断层呈现叠瓦状排列,指示自北向南逆冲推覆构造运动方向,与印度大陆北向俯冲存在动力学成因联系。高精度同位素测年资料显示,喜马拉雅山脉主中央逆冲系与羌塘地块北侧风火山逆冲推覆构造初始发育时代均早于35 Ma,东昆仑南部逆冲推覆构造运动与风火山相关岩浆侵位年龄为28.8~26.5 Ma。青藏高原腹地强烈逆冲推覆构造运动结束于早中新世五道梁群湖相沉积之前。青藏高原渐新世逆冲推覆构造运动对地壳缩短增厚与均衡隆升具有重要贡献。  相似文献   

2.
李成志  杨文光  朱利东 《地质论评》2019,65(Z1):126-128
正拉萨地体记录了多期次碰撞造山和特提斯洋演化的关键信息(许志琴等,2006)。拉萨地体南缘发育大量晚白垩系—古近系岩浆活动且规模较大,冈底斯南部酸性火山岩为典型代表,为印度大陆—亚洲大陆碰撞演化及新特提斯洋向北俯冲消减提供证据。早期学者认为古新世花岗岩类由于新特提斯洋板块俯冲所造成。之后部分研究者通过系统研究林子宗火山岩认为印度—亚洲板块碰撞促  相似文献   

3.
青藏高原羌塘盆地南部古近纪逆冲推覆构造系统   总被引:2,自引:0,他引:2  
吴珍汉  叶培盛  胡道功  陆露 《地质通报》2011,30(7):1009-1016
西藏羌塘地块南部古近纪发育肖茶卡-双湖逆冲推覆构造、多玛-其香错逆冲推覆构造、赛布错-扎加藏布逆冲推覆构造,构成古近纪大型逆冲推覆构造系统。沿逆冲推覆构造的前锋断层,二叠系白云岩与大理岩化灰岩、三叠系砂岩与页岩、侏罗系碎屑岩与碳酸盐岩和三叠纪—侏罗纪蛇绿岩自北向南逆冲推覆于古近纪红色砂砾岩之上,形成规模不等的构造岩片与飞来峰。羌塘盆地南部主要的逆冲断层和下伏的褶皱红层被中新世湖相沉积地层角度不整合覆盖,表明逆冲推覆构造运动自中新世以来基本停止活动。羌塘盆地南部古近纪逆冲推覆构造运动在近南北方向产生的最小位移为90km,指示新生代早期上地壳缩短率约为47%。古近纪逆冲推覆构造对羌塘盆地油气资源具有重要影响。  相似文献   

4.
东昆仑南部晚新生代逆冲推覆构造系统   总被引:7,自引:1,他引:7  
通过对东大滩—东温泉地区的路线地质观测与构造填图,在东昆仑南部发现晚新生代大型逆冲推覆构造系统。沿低角度逆冲断层,早二叠世大理岩和早三叠世砂板岩自北向南逆冲推覆于古新统—始新统风火山群紫红色砾岩和渐新世砖红色砂砾岩之上,形成大量不同规模的飞来峰;沿主逆冲断层发育厚层断层角砾岩与断层泥,局部形成碳酸盐质糜棱岩。东昆仑南部逆冲推覆构造的发育时代为渐新世晚期—中新世早期,主要形成、活动时期为26~13.5Ma;估算最小逆冲推覆距离为30~35km,最小逆冲推覆运动速率为2.4~2.8mm/a。东昆仑南部晚新生代逆冲推覆构造运动与现今山脉快速隆升存在着动力学成因联系。  相似文献   

5.
张传林  马华东  刘晓强 《地质论评》2022,68(5):1653-1673
位于印度—欧亚大陆碰撞造山带西段的帕米尔构造结,自震旦纪以来经历了长期的地体裂离、寒武纪至古新世俯冲增生、始新世的最终造山及始新世至全新世大型走滑—伸展、逆冲推覆及构造隆升,记录了最完整的特提斯演化及新特提斯洋关闭后陆内隆升过程。然而,对帕米尔不同地体的构造属性、原特提斯洋俯冲极性、古特提斯阶段是否存在双向俯冲、新特提斯洋俯冲导致的盆山耦合效应以及新生代大规模碱性岩浆活动的地球动力学背景等关键科学问题,仍存在很大争议。笔者等全面总结了前人对帕米尔构造结的研究成果,结合野外地质调查,对帕米尔构造结显生宙以来的构造演化过程做了概括性总结。研究表明,北帕米尔既不是塔里木前寒武纪基底的一部分,也不是三叠纪增生杂岩,它的主体是寒武纪原特提斯洋南向俯冲形成的巨厚增生杂岩(530~500 Ma)。与昆仑—阿尔金不同的是,帕米尔地区的原特提斯洋在早古生代晚期并没有关闭,这一残留洋盆在古特提斯阶段再次扩张,形成了石炭纪—早中生代有限洋盆。随着古特提斯洋的双向俯冲,中、南帕米尔相继与北帕米尔地体发生汇聚,最终拼合的时间在180 Ma左右。古特提斯洋俯冲、关闭伴随着新特提斯洋的打开和扩张,从晚侏罗世开始新特提斯洋沿Shyok缝合带北缘北向低角度或近水平俯冲(开始时间约为160~130 Ma),形成了南帕米尔—喀喇昆仑宽阔的岛弧岩浆岩带,并在中帕米尔及北帕米尔地区,发育与弧后伸展有关的地堑或半地堑沉积及具有板内特征的基性岩浆活动。新特提斯洋最终在始新世关闭(60~50 Ma左右),导致南帕米尔与洋内俯冲形成的科西斯坦—拉达克洋内弧及印度板块的最终拼合,形成了帕米尔雏形。40 Ma左右,由于俯冲板片的拆离,形成这一时期造山后碱性岩浆活动。此后,由于印度板块和欧亚板块的大陆岩石圈不断汇聚,帕米尔构造结的岩石圈厚度急剧增加,沿中帕米尔一带,可能是印度板块与欧亚板块岩石圈地幔的分界,近水平的相向俯冲导致了加厚岩石圈的拆沉,形成沿中帕米尔分布的巨量新生代碱性岩带(25~9 Ma)。  相似文献   

6.
张传林  马华东  刘晓强 《地质论评》2022,68(4):2022082020-2022082020
位于印度—欧亚大陆碰撞造山带西段的帕米尔构造结,自震旦纪以来经历了长期的地体裂离、寒武纪至古新世俯冲增生、始新世的最终造山及始新世至全新世大型走滑—伸展、逆冲推覆及构造隆升,记录了最完整的特提斯演化及新特提斯洋关闭后陆内隆升过程。然而,对帕米尔不同地体的构造属性、原特提斯洋俯冲极性、古特提斯阶段是否存在双向俯冲、新特提斯洋俯冲导致的盆山耦合效应以及新生代大规模碱性岩浆活动的地球动力学背景等关键科学问题,仍存在很大争议。本文全面总结了前人对帕米尔构造结的研究成果,结合野外地质调查,对帕米尔构造结显生宙以来的构造演化过程做了概括性总结。研究表明,北帕米尔既不是塔里木前寒武纪基底的一部分,也不是三叠纪增生杂岩,它的主体是寒武纪原特提斯洋南向俯冲形成的巨厚增生杂岩(530~500Ma)。与昆仑—阿尔金不同的是,帕米尔地区的原特提斯洋在早古生代晚期并没有关闭,这一残留洋盆在古特提斯阶段再次扩张,形成了石炭纪—早中生代有限洋盆。随着古特提斯洋的双向俯冲,中、南帕米尔相继与北帕米尔地体发生汇聚,最终拼合的时间在180Ma左右。古特提斯洋俯冲、关闭伴随着新特提斯洋的打开和扩张,从晚侏罗世开始新特提斯洋沿Shyok缝合带北缘北向低角度或近水平俯冲(开始时间约为160~130Ma),形成了南帕米尔—喀喇昆仑宽阔的岛弧岩浆岩带,并在中帕米尔及北帕米尔地区,发育与弧后伸展有关的地堑或半地堑沉积及具有板内特征的基性岩浆活动。新特提斯洋最终在始新世关闭(60~50 Ma左右),导致南帕米尔与洋内俯冲形成的科西斯坦—拉达克洋内弧及印度板块的最终拼合,形成了帕米尔雏形。40Ma左右,由于俯冲板片的拆离,形成这一时期造山后碱性岩浆活动。此后,由于印度板块和欧亚板块的大陆岩石圈不断汇聚,帕米尔构造结的岩石圈厚度急剧增加,沿中帕米尔一带,可能是印度板块与欧亚板块岩石圈地幔的分界,近水平的相向俯冲导致了加厚岩石圈的拆沉,形成沿中帕米尔分布的巨量新生代碱性岩带(25~9 Ma)。  相似文献   

7.
在系统分析青藏高原及邻区古新世残留盆地类型、形成构造背景、岩石地层序列的基础上,对青藏高原古新世构造岩相古地理演化特征进行讨论:青藏高原西北部的西昆仑,北部的阿尔金、祁连、西秦岭,东北部的松潘-甘孜和南部的冈底斯陆缘弧带,以及北部的阿拉善古陆和南部的上扬子古陆和印度古陆为隆起剥蚀区。西宁-兰州、成都和班戈地区零星分布个别构造压陷湖盆。高原西部和南部为新特提斯海。南部的特提斯-喜马拉雅海区的古地理格局为萨嘎以西为残余洋盆,以东为前陆盆地。由此提出,白垩纪晚期—古新世印度板块与欧亚板块的碰撞起始于东部构造结,新特提斯洋的闭合是自东向西进行的。  相似文献   

8.
位于青藏高原南部的冈底斯岩浆弧形成于中生代新特提斯大洋岩石圈的长期俯冲过程中,而且在印度与亚洲大陆碰撞过程中叠加了强烈的新生代岩浆作用,是世界上典型的复合型大陆岩浆弧,已经成为研究汇聚板块边缘岩浆作用和大陆地壳生长与再造的天然实验室。基于对现有研究成果的总结,我们将冈底斯岩浆弧的岩浆构造演化划分为5个阶段:第1阶段发生在晚白垩世之前,以新特提斯洋岩石圈长期正常俯冲和钙碱性弧岩浆岩的发育为特征;第2阶段发生在晚白垩世时期,以活动的新特提斯洋中脊发生俯冲和强烈的岩浆作用与显著的新生地壳生长为特征;第3阶段发生在晚白垩世晚期,以残余的新特提斯大洋岩石圈俯冲和正常弧型岩浆作用为特征;第4阶段发生在古新世至中始新世,以印度与亚洲大陆碰撞、俯冲的新特提斯洋岩石圈回转和断离,及其诱发的幔源岩浆作用、新生和古老地壳的强烈再造为特征;第5阶段为发生在晚渐新世到中中新世的后碰撞阶段,深俯冲印度岩石圈的回转和断离,或加厚岩石圈地幔的对流移去导致了加厚下地壳的部分熔融和埃达克质岩石的广泛发育,同时伴随幔源钾质超钾质岩浆作用。冈底斯弧岩浆作用与岩浆成分的系统时空变化很好地记录了从新特提斯洋俯冲到印度亚洲大陆碰撞的完整构造演化过程。  相似文献   

9.
西藏北部新生代大型逆冲推覆构造与唐古拉山的隆起   总被引:33,自引:0,他引:33  
西藏北部唐古拉山地区新生代发育一大型逆冲推覆构造,推覆构造带走向与唐古拉山脉延伸方向一致,主体呈NW-SE向展布,由北部乌兰乌拉湖—巴庆构造带(锋带)、雀莫错—改纳构造带(中带)和南部各拉丹东—鄂碎玛构造带(根带)构成,构造样式上由根带到锋带表现为:高角度叠瓦逆冲构造、褶皱—逆冲构造和中低角度叠瓦逆冲构造,逆冲推覆运动方向由南西向北东,并在推覆构造带北侧发育新生代沱沱河前陆盆地。同构造岩浆侵入体同位素年代学和前陆盆地沉积充填序列演化表明,推覆构造形成时限为67.1~23.8Ma。推覆构造形成演化受控于印度—欧亚板块碰撞造山和其后印度板块持续向北俯冲动力学体制,并造成唐古拉山地区地壳在始新世—渐新世的强烈缩短、增厚和唐古拉山脉的隆起。  相似文献   

10.
新生代印度板块与欧亚板块的持续碰撞挤压,造成南羌塘地块向南逆冲于拉萨地块之上,并在南羌塘地块内部形成了一系列的由北往南的逆冲推覆构造。然而,到目前为止,我们对这些逆冲推覆构造及夹持其间的褶皱变形的结构组成、构造样式、形成时代以及缩短量分布等问题仍存在很大的争议。本文在详细的野外调查基础上,对赛布错-扎加藏布断裂(SZT),多玛-其香错断裂(DQT),隆鄂尼褶断带(LF)及南羌塘与中央隆起带分界的肖查卡-双湖断裂(XST)进行了几何学、运动学分析,建立了精细的构造框架。我们认为这些断裂为始新世以来形成的同时期的叠瓦状逆冲推覆;并通过野外褶皱形态,结合层面、节理面、断层面滑动矢量的分析,识别出南羌塘盆地4期构造应力场:1) 代表中特提斯俯冲碰撞阶段的近S-N 向的挤压;2) 中特提斯碰撞后,随着班公湖-怒江缝合带的形成,南羌塘地区构造应力场转为S-N 向的伸展;3) 新生代印度板块向欧亚板块俯冲碰撞,青藏高原进入陆内变形阶段,南羌塘盆地内表现为NE-SW 向的挤压,形成本文提及的一系列逆冲推覆构造;4) 随着高原的持续隆升,约14 Ma南北向裂谷开始活动,应力场转为NWW-SEE 向伸展,形成双湖裂谷系。  相似文献   

11.
Tectonics and Topography of the Tibetan Plateau in Early Miocene   总被引:1,自引:0,他引:1  
Early Miocene stratigraphy, major structural systems, magmatic emplacement, volcanic eruption, vegetation change and paleo-elevation were analyzed for the Tibetan Plateau after regional geological mapping at a scale of 1:250,000 and related researches, revealing much more information for tectonic evolution and topographic change of the high plateau caused by Indian-Asian continental collision. Lacustrine deposits of dolostone, dolomite limestone, limestone, marl, sandstone and conglomerate of weak deformation formed extensively in the central Tibetan Plateau, indicating that vast lake complexes as large as 100,000–120,000 km2 existed in the central plateau during Early Miocene. Sporopollen assemblages contained in the lacustrine strata indicate the disappearance of most tropical-subtropical broad-leaved trees since Early Miocene and the flourishing of dark needleleaved trees during Early Miocene. Such vegetation changes adjusted for latitude and global climate variations demonstrate that the central Tibetan Plateau rose to ca. 4,000–4,500 m and the northeastern plateau uplifted to ca. 3,500–4,000 m before the Early Miocene. Intensive thrust and crustal thickening occurred in the areas surrounding central Tibetan Plateau in Early Miocene, formed Gangdise Thrust System(GTS) in the southern Lhasa block, Zedong-Renbu Thrust(ZRT) in the northern Himalaya block, Main Central Thrust(MCT) and Main Boundary Thrust(MBT) in the southern Himalaya block, and regional thrust systems in the Qaidam, Qilian, West Kunlun and Songpan-Ganzi blocks. Foreland basins formed in Early Miocene along major thrust systems, e.g. the Siwalik basin along MCT, Yalung-Zangbu Basin along GTS and ZRT, southwestern Tarim depression along West Kunlun Thrust, and large foreland basins along major thrust systems in the northeastern margin of the plateau. Intensive volcanic eruptions formed in the Qiangtang, Hoh-Xil and Kunlun blocks, porphyry granites and volcanic eruptions formed in the Nainqentanglha and Gangdise Mts., and leucogranites and granites formed in the Himalaya and Longmenshan Mts. in Early Miocene. The K2O weight percentages of Early Miocene magmatic rocks in the Gangdise and Himlayan Mts. are found to increase with distance from the MBT, indicating the genetic relationship between regional magmatism and subduction of Indian continental plate in Early Miocene.  相似文献   

12.
冈底斯岩浆弧的形成与演化   总被引:10,自引:6,他引:4  
位于青藏高原南部的冈底斯岩浆弧是新特提斯大洋岩石圈长期俯冲导致的中生代岩浆作用的产物,而且在印度与亚洲大陆碰撞过程中叠加了强烈的新生代岩浆作用,是世界上典型的复合型大陆岩浆弧,也是研究增生与碰撞造山作用和大陆地壳生长与再造的天然实验室。基于岩浆、变质和成矿作用研究成果,我们将冈底斯弧的形成与演化历史划分5期,即新特提斯洋早期俯冲、新特提斯洋中脊俯冲、新特提斯洋晚期俯冲、印度-亚洲大陆碰撞和后碰撞期。第1期发生在晚白垩世之前,是以新特提斯洋岩石圈的长期俯冲、地幔楔部分熔融形成钙碱性弧岩浆岩为特征。长期的幔源岩浆作用导致了整个冈底斯弧发生显著的新生地壳生长,并在岩浆弧西部形成了一个大型的与俯冲相关的斑岩型铜矿。第2期发生在晚白垩世,活动的新特提斯洋中脊发生俯冲,软流软圈沿板片窗上涌,使上升的软流圈、地幔楔和俯冲洋壳发生部分熔融,导致了强烈的幔源岩浆作用和显著的新生地壳生长与加厚,并以不同类型和不同成分岩浆岩的同时发育和伴随的高温变质作用为特征。第3期发生在晚白垩世晚期,为新特提斯洋脊俯冲后残余大洋岩石圈的俯冲期,以正常的弧型岩浆作用为特征。第4期发生在古新世至中始新世,伴随印度与亚洲大陆的碰撞,俯冲的新特提斯洋岩石圈回转和断离引起软流圈上涌,诱发了强烈的幔源岩浆作用。在此阶段,大陆碰撞导致的地壳挤压缩短和幔源岩浆的底侵与增生,使冈底斯弧经历了显著的地壳生长和加厚,新生和古老加厚下地壳的高压、高温变质和部分熔融,幔源和壳源岩浆岩的共生和强烈的岩浆混合。所形成的I型花岗岩大多继承了新生地壳弧型岩浆岩的化学成分,并多显出埃达克岩的地球化学特征。在岩浆弧北部形成了一系列与起源于古老地壳花岗岩相关的Pb-Zn矿床。第5期发生在晚渐新世到早-中中新世的后碰撞挤压过程中,以地壳的继续加厚,加厚下地壳的高温变质、部分熔融和埃达克质岩石的形成为特征。在岩浆弧东段南部形成了一系列与起源于新生加厚下地壳埃达克质岩石相关的斑岩型Cu-Au-Mo矿。冈底斯带的多期岩浆、变质与成矿作用为其从新特提斯洋俯冲到印度-亚洲大陆碰撞的构造演化提供了重要限定。  相似文献   

13.
Early Cenozoic Tectonics of the Tibetan Plateau   总被引:1,自引:0,他引:1  
Geological mapping at a scale of 1:250000 coupled with related researches in recent years reveal well Early Cenozoic paleo-tectonic evolution of the Tibetan Plateau. Marine deposits and foraminifera assemblages indicate that the Tethys-Himalaya Ocean and the Southwest Tarim Sea existed in the south and north of the Tibetan Plateau, respectively, in Paleocene-Eocene. The paleooceanic plate between the Indian continental plate and the Lhasa block had been as wide as 900km at beginning of the Cenozoic Era. Late Paleocene transgressions of the paleo-sea led to the formation of paleo-bays in the southern Lhasa block. Northward subduction of the Tethys-Himalaya Oceanic Plate caused magma emplacement and volcanic eruptions of the Linzizong Group in 64.5-44.3 Ma, which formed the Paleocene-Eocene Gangdise Magmatic Arc in the north of Yalung-Zangbu Suture (YZS), accompanied by intensive thrust in the Lhasa, Qiangtang, Hoh Xil and Kunlun blocks. The Paleocene-Eocene depression of basins reached to a depth of 3500-4800 m along major thrust faults and 680-850 m along the boundary normal faults in central Tibetan Plateau, and the Paleocene-Eocene depression of the Tarim and Qaidam basins without evident contractions were only as deep as 300-580 m and 600-830 m, respectively, far away from central Tibetan Plateau. Low elevation plains formed in the southern continental margin of the Tethy-Himalaya Ocean, the central Tibet and the Tarim basin in Paleocene-Early Eocene. The Tibetan Plateau and Himalaya Mts. mainly uplifted after the Indian-Eurasian continental collision in Early-Middle Eocene.  相似文献   

14.
Thrusting of the North Lhasa Block in the Tibetan Plateau   总被引:9,自引:1,他引:8  
A huge thrust system, the North Lhasa Thrust (NLT), was discovered in the northern Lhasa block of the Tibetan Plateau based on geological mapping of the Damxung region and its vicinity, the Deqen-Lunpola traverse and the Amdo-Bam Co profile. The NLT consists of the Dongqiao-Lunpola thrust (DLT), the west Namco thrust (WNT) and the south Damxung thrust (SDT) and ductile shear zones, ophiolite slices and folds extending in a WNW direction. Major thrust faults of the NLT seem to merge into a single deep-seated detachment of the upper-crust and totally displaced southward as far as 100-120 km. Chronological analyses with 39Ar-40Ar of plagioclase and hornblende, Rb-Sr isochron of minerals and fission-tracks of apatite from mylonite within the WNT yield ages of 174-173 Ma, 109 Ma and 44 Ma, showing 3 periods of thrusting in the north Lhasa block caused by subduction of the Tethys oceanic plate and the India-Eurasia continental collision respectively.  相似文献   

15.
The Gangdese magmatic belt formed during Late Triassic to Neogene in the southernmost Lhasa terrane of the Tibetan plateau. It is interpreted as a major component of a continental margin related to the northward subduction of the Neo-Tethys oceanic slab beneath Eurasia and it is the key in understanding the tectonic framework of southern Tibet prior to the India-Eurasia collision. It is widely accepted that northward subduction of the Neo-Tethys oceanic crust formed the Gangdese magmatic belt, but the occurrence of Late Triassic magmatism and the detailed tectonic evolution of southern Tibet are still debated. This work presents new zircon U-Pb-Hf isotope data and whole-rock geochemical compositions of a mylonitic granite pluton in the central Gangdese belt, southern Tibet. Zircon U-Pb dating from two representative samples yields consistent ages of 225.3±1.8 Ma and 229.9±1.5 Ma, respectively, indicating that the granite pluton was formed during the early phase of Late Triassic instead of Early Eocene(47–52 Ma) as previously suggested. Geochemically, the mylonitic granite pluton has a sub-alkaline composition and low-medium K calc-alkaline affinities and it can be defined as an I-type granite with metaluminous features(A/CNK1.1). The analyzed samples are characterized by strong enrichments of LREE and pronounced depletions of Nb, Ta and Ti, suggesting that the granite was generated in an island-arc setting. However, the use of tectonic discrimination diagrams indicates a continental arc setting. Zircon Lu-Hf isotopes indicate that the granite has highly positive εHf(t) values ranging from +13.91 to +15.54(mean value +14.79), reflecting the input of depleted mantle material during its magmatic evolution, consistent with Mg~# numbers. Additionally, the studied samples also reveal relatively young Hf two-stage model ages ranging from 238 Ma to 342 Ma(mean value 292 Ma), suggesting that the pluton was derived from partial melting of juvenile crust. Geochemical discrimination diagrams also suggest that the granite was derived from partial melting of the mafic lower crust. Taking into account both the spatial and temporal distribution of the mylonitic granite, its geochemical fingerprints as well as previous studies, we propose that the northward subduction of the Neo-Tethys oceanic slab beneath the Lhasa terrane had already commenced in Late Triassic(~230 Ma), and that the Late Triassic magmatic events were formed in an active continental margin that subsequently evolved into the numerous subterranes, paleo-island-arcs and multiple collision phases that form the present southern Tibet.  相似文献   

16.
大陆弧岩浆幕式作用与地壳加厚:以藏南冈底斯弧为例   总被引:1,自引:0,他引:1  
大陆弧岩浆带位于汇聚板块的前缘,记录了洋陆俯冲过程和大陆地壳生长过程,是研究壳幔相互作用的天然实验室。越来越多的研究发现,大陆弧岩浆的生长与侵位并不是均一的、连续的过程,而是呈现阶段性、峰期性特征,即幕式岩浆作用。弧岩浆峰期与岩浆平静期相比,岩浆增生速率显著增强,易于发生岩浆聚集,继而形成大的岩基,如北美西部科迪勒拉造山带内华达岩基、半岛岩基等。藏南冈底斯岩浆带位于拉萨地体南缘,属于印度-亚洲碰撞带的上盘,其南侧与喜马拉雅地体以雅鲁藏布蛇绿岩带为界。冈底斯弧岩浆形成时代集中在240~50 Ma期间,其形成与演化与新特提斯洋壳岩石圈板片俯冲到拉萨地体之下密切相关。因此,对冈底斯弧型岩浆作用的研究,将很好地揭示大陆型弧岩浆的演化过程,继而反演洋-陆俯冲过程,以及壳幔相互作用过程。通过对冈底斯岩浆带岩浆岩锆石U-Pb及Lu-Hf同位素,以及弧前和前陆盆地碎屑锆石U-Pb和Lu-Hf同位素的收集和整理,结合已经发表的区域地质资料的总结,我们发现冈底斯弧型岩浆演化具有如下特点:1幕式侵位,岩浆峰期为100~80 Ma和65~40 Ma,中间为岩浆平静期;2峰期阶段岩浆聚集,形成巨大岩基;岩石同位素非常亏损,预示着地幔物质的显著参与;3在弧岩浆的峰期阶段,冈底斯地壳厚度有显著增加,说明弧岩浆的峰期侵位对地壳加厚有重大贡献。  相似文献   

17.
Magmatic arcs are thought to be the primary sites of modern-day continental crustal growth, and arc crustal sections provide an exceptional opportunity to directly observe the geological processes that occur there, yet few deeply exposed arc sections are available for direct study. The Gangdese magmatic arc, southern Tibet, formed during the Mesozoic subduction of Neo-Tethyan oceanic lithosphere and Cenozoic collision between the Indian and Asian continents, and represent juvenile continental crust. However, the petrological components and compositions of the lower crust of the Gangdese arc remain unknown. Based on detailed geological mapping, we conducted a systemic geochemical, geochronological and zircon Hf isotopic study of well-exposed high-grade metamorphic and migmatitic rocks from the lower crust of the eastern Gangdese arc. The results obtained show that Late Cretaceous garnet amphibolites, dioritic and granitic gneisses, and Paleocene–Eocene garnet amphibolites and granitic gneisses are the main components of the Gangdese lower arc crust. These meta-intrusive rocks witnessed a long period of magmatic, and metamorphic and anatectic processes from the Middle Jurassic to the Late Eocene, and have chemical compositions that range from ultramafic to felsic, with an average SiO2 content of 57.61 wt% and Mg# value of 0.49. These new data indicate firstly that the Gangdese lower arc crust has an overall intermediate composition and typical feature of juvenile crusts, and therefore supports the recent proposition that continental lower crusts are relatively felsic in composition, instead of mafic. We consider that the downward transport of felsic intrusives and associated sedimentary rocks into the deep crustal levels and subsequent partial melting resulted in componential and compositional changes of the Gangdese arc lower crust over time. This is a potential key mechanism in transforming primary lower arc crust to mature continental lower crust for the magmatic arcs with a complete growth history.  相似文献   

18.
冈底斯岩浆岩带(以下简称冈底斯带)是新特提斯洋俯冲和印度—亚洲板块碰撞的产物,为典型的复合型大陆岩浆弧,是研究板块增生、大陆地壳生长再造和碰撞造山的天然实验室。大量研究揭示新特提斯洋主要经历了4个重要的演化时期:分别是早期俯冲(>152 Ma)、晚期俯冲(100~65 Ma)、主碰撞(55~40 Ma)和后碰撞伸展期(23 Ma至今)。前人对其开展了大量的工作,并取得了重要的认识和进展,然而关于新特提斯洋的形成和演化以及冈底斯带火成岩岩浆源区的属性、精细的成岩过程等方面仍然存在着激烈的争议。文章首先介绍了冈底斯带的研究历史和大地构造背景,对冈底斯带目前存在的主要科学问题和争议进行了初步梳理,从13个方面进行了论述和总结。初步的梳理给出的启示是:冈底斯带是一个典型的岩浆—构造—成矿—变形变质带,经历了长期、复杂和多阶段的演化过程,而不是简单地拼贴于古老拉萨地体之上的新生大陆岛弧体。主要认识包括:(1)冈底斯岛弧带是研究新特提斯洋俯冲最为理想的场所,记录了新特提斯洋演化的关键信息,是破解新特提斯洋板片初始俯冲时限和板片俯冲方式最佳的研究对象;(2)冈底斯带中不同时代的花岗岩基或岩株可能经历了一个多期次组装累积的过程,今后应运用晶粥体的模型去重新理解冈底斯带花岗质岩石的形成和动力学成岩过程;(3)冈底斯地区地幔的性质沿着走向表现出复杂性,具有地球化学上的不均一性;(4)冈底斯带的火成岩存在同位素上的倒转,这可能暗示冈底斯地区存在老的基底;(5)冈底斯岛弧带在构造上具有明显的掀斜性,表现出东段以下地壳组分为主,中西段以中上地壳组分为主,暗示了冈底斯带自新生代以来经历了一个不均衡的构造抬升和剥露过程; (6)冈底斯带的研究对象仍以火成岩为主,研究方法多限于传统的岩石学和放射性Sr-Nd-Hf同位素手段,而非传统的稳定性同位素(Mg-O-Li-B-Mo)的研究却鲜有报道,并且在研究内容上主要以岩石成因和地质年代学为主,而对火成岩侵位过程和成岩后的构造变形和抬升剥蚀等相关研究则相对薄弱;(7)目前,构造地质学手段在冈底斯带的研究中运用较少,常以岩浆演化来代替构造演化。最后,文章针对目前的研究现状,对冈底斯带未来的研究方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号