首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
基于GNSS(global navigation satellite system)非差观测量,利用双线程钟差加密的方法,本文实现了导航卫星实时钟差的逐秒更新。通过选取全球均匀分布的76个参考站对四系统钟差进行联合估计,并从实时轨道精度,解算效率,钟差精度和精密单点定位(precision point positioning,PPP)定位结果对该系统进行分析和评估。结果表明,GPS预报轨道径向精度为2.3 cm,GLONASS和Galileo预报轨道径向精度为3 cm和3.5 cm,北斗GEO、IGSO、MEO卫星预报轨道径向精度分别为31 cm,17 cm和5.3 cm;钟差统计结果表明,GPS实时钟差精度优于0.2 ns,GLONASS钟差精度优于0.4 ns,Galileo钟差精度优于0.3 ns,受轨道影响,北斗GEO实时钟差精度为0.6~1.0 ns,IGSO钟差精度为0.4~0.7 ns,MEO钟差精度为0.3~0.4 ns;PPP定位结果表明,解算钟差定位精度与事后钟差定位结果相当,平面精度在3 cm以下,高程精度在5 cm以下。  相似文献   

2.
陈良  耿长江  周泉 《测绘学报》2016,45(9):1028-1034
实时GNSS精密单点定位(PPP)技术必须使用实时的高精度卫星精密轨道和钟差。本文研究了精密卫星钟差融合解算模型及策略,并利用滤波算法实现了北斗/GPS实时精密卫星钟差融合估计算法。仿真实时试验结果显示:获得的北斗/GPS实时钟差与GFZ事后多GNSS精密钟差(GBM)的标准差在0.15 ns左右;使用该钟差进行GPS动态PPP试验,收敛后水平精度优于5 cm,高程精度优于10 cm;使用仿真实时钟差进行的北斗动态PPP与使用GFZ事后多GNSS精密钟差开展的试验相比精度相当,可实现分米级定位。  相似文献   

3.
GNSS增强系统中精密实时钟差高频估计及应用研究   总被引:1,自引:0,他引:1  
GNSS星基差分增强系统依赖于实时轨道及钟差增强信息。本文主要研究多GNSS实时精密钟差估计模型,在传统非差基础上优化待估参数,实现了一种高效的Multi-GNSS实时钟差简化估计模型。基于PANDA软件开展了实时轨道数据处理与分析,经过验证可获得的GPS/北斗MEO/Galileo实时轨道径向精度1~5cm,北斗GEO/IGSO卫星径向精度约10cm。分析发现本文优化的实时钟差简化估计模型单历元解算效率较高,可应用于实时钟差增强信息高频(如1Hz)更新,且解算获得的实时钟差不存在常偏为绝对钟差;基于实时轨道,通过该模型可获得实时钟差精度GPS约0.22ns,北斗GEO约0.50ns、IGSO/MEO约0.24ns,Galileo约0.32ns。在此基础上,利用目前所获取的MultiGNSS实时数据流搭建了Multi-GNSS全球实时增强原型系统,并基于互联网实时播发增强信息,可初步实现实时PPP厘米级服务、伪距米级导航定位服务。  相似文献   

4.
为更快地获取高可靠性、高精度的天顶对流层延迟,提出了选择历元间差分与非差组合模型为函数模型,对BDS/GPS钟差参数采用近实时方式进行估计。为此,从全球范围内均匀选取45个MGEX跟踪站,使用GFZ的超快速轨道产品为钟差估计提供初始轨道信息,并以事后产品为参考值。试验结果表明,GPS实时钟差的精度优于0.06 ns,略低于事后钟差估计精度,三类BDS卫星的实时钟差估计精度均在0.04~0.08 ns,其中GEO卫星的准实时钟差精度略低于IGSO和MEO卫星,满足近实时天顶对流层延迟估计的需求。  相似文献   

5.
卫星钟差的难预测性是影响实时高精度定位的重要因素之一。为快速获得高精度位置或对流层等信息,在非差观测模型的基础上,本文提出了一种延迟量约1 h的近实时钟差估计策略,该策略主要包含超快速轨道解算和钟差估计两部分。经验证,预报部分第2~5 h的GPS轨道三维平均精度为3.85 cm,BDS GEO和IGSO+MEO轨道三维平均精度分别为81.4和21.74 cm。基于超快速轨道可获得近实时钟差精度GPS为0.054 ns,BDS为0.12 ns。最后通过BDS+GPS静态PPP试验验证了轨道和钟差的可用性。  相似文献   

6.
研究了导航卫星精密钟差的估计算法,实现了基于非差载波相位观测值的实时和事后精密卫星钟差的解算,并与IGS分析中心提供的精密钟差产品进行了比较。结果表明,采用自编软件解算的事后精密卫星钟差与IGS最终精密钟差产品具有较好的一致性,其互差仅为0.05ns左右;实时估计结果与CODE提供的事后钟差产品符合较好,二者差异为0.1ns左右。  相似文献   

7.
实时钟差产品是高精度广域差分位置服务(亚米级、分米级、厘米级)的基础产品,通过研究BDS/GPS融合的ISB,研究了各类型接收机BDS GEO/IGSO/MEO ISB差异,提出了在BDS/GPS联合的实时钟差估计中引入3个ISB参数的函数模型,在此基础上基于非差法实现了BDS/GPS联合的实时钟差估计。采用MGEX和湖南CORS实时观测数据进行了实时钟差解算,利用iGMAS产品综合中心提供的事后精密钟差产品作为基准,对比分析了新方法与原有方法的实时钟差产品的精度差异。结果表明,该方法与原方法估计的GPS钟差精度相当,对BDS实时钟差精度改进显著,尤其对BDS IGSO/MEO卫星,改进幅度在20%以上,验证了算法的有效性。  相似文献   

8.
针对北斗卫星三号(BDS-3)卫星钟的表现情况的问题,该文选取了全球均匀分布的120个国际GNSS服务(IGS)跟踪站的北斗三号卫星观测数据进行北斗卫星钟差估计,利用评价卫星钟差产品的方法分析北斗新一代卫星钟的精度水平。得到结果如下:北斗卫星钟中圆地球轨道(MEO)精度在0.1 ns以内、倾斜地球同步轨道(IGSO)精度在0.15 ns以内,地球静止轨道(GEO)精度在0.2~0.9 ns水平;BDS-3卫星的频率的万秒稳定度已经处于1×10-14水平;GPS与BDS精密单点定位解算结果的均方根误差(RMS)均在厘米级。基于卫星钟差实验结果表明,MEO比IGSO卫星钟差精度高,稳定性强;BDS-3搭载的铷钟(Rb-Ⅱ)和氢钟(PHM)比BDS-2的铷钟(Rb)更稳定,这是因为发射较早的卫星钟普遍受到硬件老化影响,相位与频率的波动较大;BDS在U方向上的精度与收敛速度略有不足,可通过GPS+BDS组合定位提升U方向单点定位性能。北斗卫星钟的精度、稳定性已达到钟差预报及实时精密单点定位应用的需求。  相似文献   

9.
在进行GPS/GLONASS联合卫星钟差估计时,GLONASS码频间偏差(inter-frequency bias,IFB)因卫星频率间的差异而无法被测站接收机钟差参数吸收,其一部分将进入GLONASS卫星钟差估值中。通过引入多个"时频偏差"参数(inter-system and inter-frequency bias,ISFB)及附加基准约束对测站GLONASS码IFB进行函数模型补偿,实现其与待估卫星钟差参数的有效分离,并对所估计实时卫星钟差和实时精度单点定位(real-time precise point positioning,RT-PPP)进行精度评估。结果表明,在卫星钟差估计观测方程中忽略码IFB,会明显降低GLONASS卫星钟差估值精度;新方法能有效避免码IFB对卫星钟差估值的影响,所获得GPS、GLONASS卫星钟差与ESA(European Space Agency)事后精密钟差产品偏差平均均方根值分别小于0.2 ns、0.3 ns。利用实时估计卫星钟差进行静态RT-PPP,当观测时段长为2 h时,GPS单系统、GPS/GLONASS组合系统的3D定位精度优于10 cm,GLONASS单系统3D定位精度约为15 cm;三种模式24 h单天解的3D定位精度均优于5 cm。  相似文献   

10.
卫星实时钟差求解是GNSS实时位置服务的关键。针对GNSS实时钟差估计过程中待估参数过多的问题,综合高精度估计的非差法与快速解算的历元间差分法优势,采用顾及ISB/IFB参数的GNSS卫星钟差实时混合估计方法,对卫星钟差的实时估计效率、估计精度进行分析,并利用精密单点定位对实时钟差产品进行验证。结果满足高精度导航定位用户的需求。  相似文献   

11.
GPS/GLONASS卫星钟差联合估计过程中,由于GLONASS系统采用频分多址技术区分卫星信号,因而会产生频率间偏差(IFB)[1]。本文在GPS/GLONASS卫星定轨过程中的IFB参数特性分析的基础上,引入IFB参数,实现顾及频率间偏差的GPS/GLONASS卫星钟差实时估计。同时,为解决实时估计中待估参数过多导致的实时性较弱等问题,基于非差伪距观测值和历元间差分相位观测值改进实时估计数学模型,实现多系统卫星钟差的联合快速估计。结果表明:GPS/GLONASS联合估计时需引入IFB参数并优化其估计策略,采用MGEX和iGMAS跟踪站的实测数据进行实时钟差解算,快速估计方法可实现1.6 s逐历元快速、高精度估计,与GBM提供的最终精密卫星钟差相比,GPS卫星钟差实时精度约为0.210 ns,GLONASS卫星约为0.298 ns。  相似文献   

12.
实时钟差产品是高精度广域差分位置服务(亚米级、分米级、厘米级)的基础产品,本文针对BDS/GPS轨道精度差异,设计了一种顾及轨道精度差异观测权函数,优化了实时钟差估计的随机模型,在此基础上基于非差法实现了BDS/GPS联合的实时钟差估计。采用MGEX和iGMAS跟踪站的实时观测数据进行实时钟差解算,并与iGMAS产品综合中心提供的事后精密钟差产品进行了比较分析。结果表明:基于该方法估计的钟差精度对单GPS、单BDS和BDS/GPS融合都有提高,其中BDS钟差精度整体较GPS更为显著,提高幅度约12.8%,其中IGSO/MEO更为突出,提高幅度约20%,验证了方法的有效性。  相似文献   

13.
GPS精密卫星钟差估计与分析   总被引:6,自引:1,他引:5  
探讨了GPS精密卫星钟差的估计方法,并分析了伪距与相位观测值对估计精度的影响。基于PAN-DA软件,采用全球均匀分布的40个IGS跟踪站的实测数据,对GPS精密钟差进行估计与分析。试验结果表明,目前采用PANDA软件估计的GPS精密卫星钟差与IGS事后精密卫星钟差比较,互差优于0.2 ns,与国际IGS各分析中心估计的卫星钟差精度相当。  相似文献   

14.
卫星钟差是影响卫星定位精度的重要误差源之一,而实时精密单点定位又要求卫星钟差实时更新。卫星钟差的解算可通过非差模型或历元差分模型实现,但非差模型涵盖较多的载波相位模糊度参数,相比消掉模糊度参数的历元差分模型,计算效率要慢许多。历元差分模型仅利用载波相位观测量就可获得高精度卫星钟差历元间差,恢复后的卫星钟差仍可达到一定精度水平。利用历元差分模型可实现北斗卫星钟差的实时解算,试验结果表明:通过滤波得到的卫星钟差历元间差精度优于0.02 ns,恢复后的卫星钟差精度优于0.25 ns.   相似文献   

15.
为估算与分析GNSS卫星钟差的精度,利用中国测绘科学研究院国际GNSS监测评估系统分析中心研发的软件,采用全球均匀分布的50个IGS跟踪站和8个我国自建的IGMAS测站的观测数据,对GNSS包含的四大导航系统事后精密卫星钟差进行了估计。计算结果分别与国际上的分析中心结果进行了比对,得出GPS卫星钟差与IGS结果互差在0.2ns,GALILEO卫星钟差精度与GPS相当,在亚纳秒量级,GLONASS卫星钟差精度相对较低,在4ns以内,BDS各轨道类型上卫星之间钟差存在较大的系统性偏差,选择多星基准消除偏差之后,估算的北斗卫星钟差精度在1ns以内。试验结果表明,目前我国分析中心估算的卫星钟差总体上与国际IGS各分析中心估计的卫星钟差精度相当。  相似文献   

16.
广播星历的误差能够直接影响卫星定位的精度,对北斗的广播星历精度进行分析可以为GPS与北斗组合定位观测值定权提供依据。通过与精密星历进行比较,结果表明: 北斗轨道误差优于5 m,钟差均方根误差优于13 ns,以空间信号测距误差(SISRE)为指标,北斗广播星历整体精度优于4.5 m。通过与GPS进行对比,结果表明北斗广播星历精度略低于GPS。  相似文献   

17.
研究了联合BDS/GPS观测数据基于球冠谐函数的中国区域电离层建模,并精确估计了北斗卫星和接收机DCB。联合解算得到的GPS卫星DCB相对CODE精度优于0.2 ns,GPS接收机DCB相对CODE精度优于1 ns;联合解算得到的中国区域上空VTEC相对CODE事后产品的精度可达2~3 TECU。  相似文献   

18.
解算所有GPS卫星钟差时要求选用地面跟踪站能够观测到每颗卫星,而组成该网的跟踪站数量对卫星钟差的解算效率有较大影响。跟踪站数量越多,卫星钟差的解算效率就越低,不利于实时应用。本文利用不规则三角网对全球跟踪站进行建模,提出一种新的全球均匀选站方法,并应用于卫星钟差实时解算。试验结果表明:当跟踪站个数达到25个时,卫星钟差解算精度优于0.3 ns,且随着跟踪站的增加,精度无明显提升。此跟踪站分布可作为卫星钟差实时解算的一种选站分布参考。  相似文献   

19.
为了对多个全球导航卫星系统(global navigation satellite system, GNSS)当前的广播星历精度进行一个全面的分析,对比了2014—2018年共5 a的GNSS广播星历与精密星历,并对全球定位系统(global positioning system, GPS)、格洛纳斯卫星导航系统(global navigation satellite system, GLONASS)、伽利略卫星导航系统(Galileo satellite navigation system, Galileo)、北斗卫星导航系统(BeiDou navigation satellite system, BDS)、准天顶卫星系统(quasi-zenith satellite system, QZSS)等5个系统的广播星历长期精度变化进行了分析。结果表明:5 a中GPS的广播星历轨道及钟差精度最稳定;GLONASS的广播星历轨道精度稳定性较好,但其钟差精度存在较大的离散度;Galileo得益于具备全面运行能力(full operational capability, FOC)卫星的大量发射及运行,其广播星历轨道、钟差精度大幅度变好,切向轨道、法向轨道与钟差精度已赶超GPS;BDS的广播星历轨道精度离散度较大,钟差精度出现不稳定现象;QZSS的广播星历轨道与钟差精度的稳定性与离散度相对最差。以2018年1 a的广播星历与精密星历为例分析了各个系统当前的广播星历精度,结果表明,当前GPS、GLONASS、Galileo、BDS、QZSS的考虑轨道误差与钟差误差贡献的空间信号测距误差(signal-in-space ranging error,SISRE)分别为0.806 m、2.704 m、0.320 m、1.457 m、1.645 m,表明Galileo广播星历整体精度最高,GPS次之,其次分别是BDS、QZSS和GLONASS。只考虑轨道误差贡献的SISRE分别为0.167 m、0.541 m、0.229 m、0.804 m、0.675 m,表明GPS广播星历轨道精度最高,其次分别是Galileo、GLONASS、QZSS和BDS。GPS卫星广播星历中新型号卫星的钟差精度总体要优于旧型号卫星。  相似文献   

20.
高精度的卫星钟差是进行精密定位服务的关键,对于实时无模糊度精密单点定位来说,需要对广播星历卫星钟差进行历元差分来实现单站位移的解算,但钟差精度的历元间变化会对解算结果产生影响.对星载原子钟的短期稳定性进行分析,可以了解不同卫星钟差的时频特性,对研究广播星历钟差精度变化情况、提高单站位移解算精度具有重要的意义.本文利用单站GPS数据进行星间相对钟差的估计,然后基于相对钟差估计结果对星载RB钟的短期稳定性进行快速分析.通过实测的GPS数据进行实验,结果表明利用单站GPS数据估计的3 h的相对钟差精度要优于0.5 ns;阿伦方差计算结果表明BlockⅡF卫星RB钟短期稳定性最优,BlockⅡRM卫星和BlockⅡR卫星RB钟的短期稳定性基本相当,但要低于BlockⅡF卫星.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号