首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18565篇
  免费   3332篇
  国内免费   4296篇
测绘学   1095篇
大气科学   3834篇
地球物理   5211篇
地质学   8814篇
海洋学   2585篇
天文学   788篇
综合类   1756篇
自然地理   2110篇
  2024年   95篇
  2023年   342篇
  2022年   813篇
  2021年   954篇
  2020年   754篇
  2019年   810篇
  2018年   930篇
  2017年   890篇
  2016年   1023篇
  2015年   834篇
  2014年   1019篇
  2013年   1114篇
  2012年   969篇
  2011年   1015篇
  2010年   1094篇
  2009年   1012篇
  2008年   832篇
  2007年   897篇
  2006年   663篇
  2005年   643篇
  2004年   465篇
  2003年   528篇
  2002年   513篇
  2001年   498篇
  2000年   624篇
  1999年   911篇
  1998年   764篇
  1997年   765篇
  1996年   738篇
  1995年   648篇
  1994年   578篇
  1993年   494篇
  1992年   413篇
  1991年   291篇
  1990年   234篇
  1989年   189篇
  1988年   183篇
  1987年   103篇
  1986年   111篇
  1985年   70篇
  1984年   60篇
  1983年   57篇
  1982年   55篇
  1981年   40篇
  1980年   47篇
  1979年   36篇
  1978年   14篇
  1977年   9篇
  1974年   9篇
  1958年   16篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
2.
Sdsealbedoisdefinedasaratioofreflectivesolarradiationtototalacradiation,whichcanindicatetheaborptionandreflectivecapabilityofthe~hforsolarradiation.Itisan~tfactortoinfluencethes~radiationbalance,espeiallyfortheformationandvariationoflocalndcroclirnate.Generally,theactualdatafromo~tionalstationSforrebationareedintheanalysisofsolacealal.HOwever,therepresentativenessOfthedateisIratedduetothescarcityofobservationalstationandunevendistributionofs~condition.Afterthe1960s,theanalysisfors~ealbedoise…  相似文献   
3.
四川石棉大水沟独立碲矿床堪称世界首例,其矿体两侧的围岩蚀变较窄,且蚀变带与矿脉及未蚀变岩呈清楚而截然的接触关系。主要围岩蚀变为白云石化、白(绢)云母化、云英岩化及电气石化等。这些蚀变作用分别发生于177.7~165.1Ma和91.71~80.19Ma。蚀变作用过程中SiO2大量析出,Al2O3、TiO2、CaO、MgO、K2O、H2O、CO2、Fe2O3、MnO则有不同程度地带入。与此同时,REE在此过程中包集体迁出,Te、Bi、AS等元素的含量则决定于蚀变作用及其强度,而与原岩无关。  相似文献   
4.
Based on the CN and C2 comae isophotes for two comets (1961 IX and 1970 16) given by Rahe et al. and the relevant theory of physical chemistry, we have deduced the distributions of the CN and C2 modecules in the coma, their scale heights and mean lifetimes. The results favour the viewpoint that HCN is the parent of CN, and that C2H2 is the parent of C2.  相似文献   
5.
1 HYDROLOGIC FEATURES Lingdingyang Estuary, located at the middle south of Guangdong Province, is a bell-shaped estuary with a north-south direction. Its area is about 2100km2. The north of Qi′ao Island and Inner-Lingding Island, and the south of Humen are grouped as Neilingdingyang Estuary, having an area of 1041km2. Affected by topography, runoff and tide, its dynamic condition is very complicated. Different water areas have different hydrologic features. The topography under …  相似文献   
6.
Wintertime oxygen and pH profiles across the marginal ice zone of the central and southeastern Bering Sea shelf are analyzed and compared with summer data. During the winter, at water depths shallower than 75 m, the water column is homogeneous and near freezing. Between the 75- and 200-m isobaths the structure is essentially two-layered, a cool and fresh upper layer overlying a warmer, more saline bottom layer. The oxygen concentration in the surface mixed layer is higher than the summer values, but the degree of saturation is lower because of the lower temperature in winter. The oxygen degree of saturation in the bottom mixed layer on the shelf in winter are higher than in the surface water in winter and the bottom water in summer.In summer the oxygen and carbon dioxide data show extreme variability governed primarily by biological processes. Winter oxygen and pH data, however, do not scatter as much as the summer data and indicate conservative mixing of several sub-surface water masses. The surface water is undersaturated in both oxygen and carbon dioxide and seems to absorb oxygen, but little carbon dioxide, from the atmosphere.Two stations were occupied in the Aleutian Basin. The homogeneous surface layer has the same oxygen and pH values as in the minimum temperature layer observed in the summer by other investigators at the same location. The result substantiates the hypothesis of early investigators that the summer minimum temperature layer is the remnant local winter water. All winter surface waters sampled are undersaturated with respect to oxygen, suggesting that the input of oxygen through the air-sea exchange does not keep up with the rate of upwelling and cooling, which reduces the degree of oxygen saturation. Surface carbon dioxide is also undersaturated because of cooling. The maximum temperature layer at these two Aleutian Basin stations is warmer, fresher, and contains more oxygen, but less carbon dioxide, than in the summer, suggesting advective input of some nonlocal seawater.  相似文献   
7.
The authors analyzed the data collected in the Ecological Station Jiaozhou Bay from May 1991 to November 1994, including 12 seasonal investigations, to determine the characteristics, dynamic cycles and variation trends of the silicate in the bay. The results indicated that the rivers around Jiaozhou Bay provided abundant supply of silicate to the bay. The silicate concentration there depended on river flow variation. The horizontal variation of silicate concentration on the transect showed that the silicate concentration decreased with distance from shorelines. The vertical variation of it showed that silicate sank and deposited on the sea bottom by phytoplankton uptake and death, and zooplankton excretion. In this way, silicon would endlessly be transferred from terrestrial sources to the sea bottom. The silicon took up by phytoplankton and by other biogeochemical processes led to insufficient silicon supply for phytoplankton growth. In this paper, a 2D dynamic model of river flow versus silicate concentration was established by which silicate concentrations of 0.028–0.062 μmol/L in seawater was yielded by inputting certain seasonal unit river flows (m3/s), or in other words, the silicate supply rate; and when the unit river flow was set to zero, meaning no river input, the silicate concentrations were between 0.05–0.69 μmol/L in the bay. In terms of the silicate supply rate, Jiaozhou Bay was divided into three parts. The division shows a given river flow could generate several different silicon levels in corresponding regions, so as to the silicon-limitation levels to the phytoplankton in these regions. Another dynamic model of river flow versus primary production was set up by which the phytoplankton primary production of 5.21–15.55 (mgC/m2·d)/(m3/s) were obtained in our case at unit river flow values via silicate concentration or primary production conversion rate. Similarly, the values of primary production of 121.98–195.33 (mgC/m2·d) were achieved at zero unit river flow condition. A primary production conversion rate reflects the sensitivity to silicon depletion so as to different phytoplankton primary production and silicon requirements by different phytoplankton assemblages in different marine areas. In addition, the authors differentiated two equations (Eqs. 1 and 2) in the models to obtain the river flow variation that determines the silicate concentration variation, and in turn, the variation of primary production. These results proved further that nutrient silicon is a limiting factor for phytoplankton growth. This study was funded by NSFC (No. 40036010), and the Director's Fund of the Beihai Sea Monitoring Center, the State Oceanic Administration.  相似文献   
8.
In the article the author looks back the hard development course and great progress in earth quake science and technology in China during the last near a half of century and expounds the following 3 aspects: (1) The strong desire of the whole society to mitigate seismic disasters and reduce the effect of earthquakes on social-economic live is a great driving force to push forward the development of earthquake science and technology in China; (2) To better ensure people‘ s life and property, sustainable economic development, and social stability is an essential purpose to drive the development of earthquake science and technology in China; and (3) To insist on the dialectical connection of setup of technical system for seismic monitoring with the scientific research of earthquakes and to better handle the relation between crucial task, current scientif ic level, and the feasibility are the important principles to advance the earthquake science and technology in China. Some success and many setbacks in earthquake disaster mitigation consistently enrich our knowledge regarding the complexity of the conditions for earthquake occurrence and the process of earthquake preparation, promote the reconstruction and modernization of technical system for earthquake monitoring, and deepen the scientific research of earthquakes. During the last 5 years, the improvement and modernization of technical system for earthquake monitoring have clearly provided the technical support to study and practice of earthquake prediction and pre caution, give prominence to key problems and broaden the field of scientific research of earth quakes. These have enabled us to get some new recognition of the conditions for earthquake oc currence and process of earthquake preparation, characteristics of seismic disaster, and mecha nism for earthquake generation in China‘s continent. The progress we have made not only en courages us to enhance the effectiveness of earthquake disaster mitigation, but also provides a basis for accelerating further development of earthquake science and technology in China in the new century, especially in the 10th five-year plan. Based on the history reviewed, the author sets forth a general requirement for develop ment of earthquake science and technology in China and brings out 10 aspects to be stressed and strengthened at present and in the future. These are: upgrade and setup of the network of digitized seismic observation; upgrade and setup of the network for observation of seismic pre cursors; setup of the network for observation of strong motion; setup of the laboratories for ex periment on seismic regime; establishment of technical system for seismic information, emer gency command and urgent rescue; research on short-term and imminent earthquake predic tion; research on intermediate- and long-term earthquake prediction; research on attenuation of seismic ground motion, mechanism for seismic disaster, and control on seismic disaster; ba sic research fields related to seismology and geoscience. We expect that these efforts will signifi cantly elevate the level of earthquake science and technology in China to the advanced interna tional level, improve theories, techniques, and methods for earthquake precaution and predic tion, and enhance the effectiveness of earthquake disaster mitigation.  相似文献   
9.
1StrongtideandastronomicalconditionsPartial solar eclipse occurred 4 times in 1964, 1982 and 2000 respectively. Time interval is about 3 Saros periods (one Saros period is 18 years and 10.33~11.33 days). Total lunar eclipse occurred 2 times in 1964 and 2000 respectively and 3 times in 1982. However, there was no lunar eclipse in 1966, 1984 and 2002. It seems that they had similar astro-nomical conditions and the best was in 1982. The studies about the effect of tide on the global climate…  相似文献   
10.
Summary ?The NW–SE-trending Yulong porphyry Cu–Mo ore belt, situated in the Sanjiang0 area of eastern Tibet, is approximately 400 km long and 35 to 70 km wide. Complex tectonic and magmatic processes during the Himalayan epoch have given rise to favorable conditions for porphyry-type Cu–Mo mineralization. Porphyry masses of the Himalayan epoch in the Yulong ore belt are distributed in groups along regional NW–SE striking tectonic lineaments. They were emplaced mainly into Triassic and Lower Permian sedimentary-volcanic rocks. K–Ar und U–Pb isotopic datings give an intrusion age range of 57–26 Ma. The porphyries are mainly of biotite monzogranitic and biotite syenogranitic compositions. Geological and geochemical data indicate that the various porphyritic intrusions in the belt had a common or similar magma source, are metaluminous to peraluminous, Nb–Y–Ba-depleted, I-type granitoids, and belong to the high-K calc-alkaline series. Within the Yulong subvolcanic belt a number of porphyry stocks bear typical porphyry type Cu–Mo alteration and mineralization. The most prominent porphyry Co–Mo deposits include Yulong, Malasongduo, Duoxiasongduo, Mangzong and Zhanaga, of which Yulong is one of the largest porphyry Cu (Mo) deposits in China with approximately 8 × 106 tons of contained Cu metal. Hydrothermal alteration at Yulong developed around a biotite–monzogranitic porphyry stock that was emplaced within Upper Triassic limestone, siltstone and mudstone. The earliest alteration was due to the effects of contact metamorphism of the country rocks and alkali metasomatism (potassic alteration) within and around the porphyry body. The alteration of this stage was accompanied by a small amount of disseminated and veinlet Cu–Mo sulfide mineralization. Later alteration–mineralization zones form more or less concentric shells around the potassic zone, around which are distributed a phyllic or quartz–sericite–pyrite zone, a silicification and argillic zone, and a propylitic zone. Fluid inclusion data indicate that three types of fluids were involved in the alteration–mineralization processes: (1) early high temperature (660–420 °C) and high salinity (30–51 wt% NaCl equiv) fluids responsible for the potassic alteration and the earliest disseminated and/or veinlet Cu–Mo sulfide mineralization; (2) intermediate unmixed fluids corresponding to phyllic alteration and most Cu–Mo sulfide mineralization, with salinities of 30–50 wt% NaCl equiv and homogenization temperatures of 460–280 °C; and (3) late low to moderate temperature (300–160 °C) and low salinity (6–13 wt% NaCl equiv) fluids responsible for argillic and propylitic alteration. Hydrogen and oxygen isotopic studies show that the early hydrothermal fluids are of magmatic origin and were succeeded by increasing amounts of meteoric-derived convective waters. Sulfur isotopes also indicate a magmatic source for the sulfur in the early sulfide mineralization, with the increasing addition of sedimentary sulfur outward from the porphyry stock. Received August 29, 2001; revised version accepted May 1, 2002 Published online: November 29, 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号