首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73258篇
  免费   588篇
  国内免费   568篇
测绘学   1962篇
大气科学   4473篇
地球物理   13437篇
地质学   29052篇
海洋学   6170篇
天文学   16260篇
综合类   276篇
自然地理   2784篇
  2022年   537篇
  2021年   837篇
  2020年   897篇
  2019年   1020篇
  2018年   4159篇
  2017年   3726篇
  2016年   3260篇
  2015年   1073篇
  2014年   1953篇
  2013年   3109篇
  2012年   2889篇
  2011年   4560篇
  2010年   4071篇
  2009年   4707篇
  2008年   3966篇
  2007年   4569篇
  2006年   2679篇
  2005年   1853篇
  2004年   1799篇
  2003年   1770篇
  2002年   1587篇
  2001年   1320篇
  2000年   1236篇
  1999年   931篇
  1998年   928篇
  1997年   947篇
  1996年   706篇
  1995年   724篇
  1994年   712篇
  1993年   577篇
  1992年   573篇
  1991年   526篇
  1990年   617篇
  1989年   519篇
  1988年   490篇
  1987年   515篇
  1986年   413篇
  1985年   596篇
  1984年   620篇
  1983年   598篇
  1982年   564篇
  1981年   500篇
  1980年   523篇
  1979年   406篇
  1978年   433篇
  1977年   398篇
  1976年   347篇
  1975年   358篇
  1974年   338篇
  1973年   359篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
This paper presents an introductory overview of recently developed stochastic theories for tackling spatial variability problems in predicting groundwater flow and solute transport. Advantages and limitations of the theories are discussed. Lastly, strategies based on the stochastic approaches to predict solute transport in aquifers are recommended.  相似文献   
2.
3.
The UBV photometric observations of RT Per, from Sanwal and Chaubey (1981), were analyzed by the Wilson and Devinney code (1971). The light curves include reflection effects that for the first time has been suggested by Dugan (1911). RT Per has a semi-detached configuration where the lower-mass component is in contact with its respective Roche surface. The higher-mass component very nearly fills its Roche lobe. It has the characteristic of an Algol type system. The absolute dimensions for the primary and secondary of this system were calculated from its spectral types and by combining the photometric solution with inferred component radial velocities (Lu, 1990).  相似文献   
4.
5.
6.
A micropolar elastoplastic model for soils is formulated and a series of finite element analyses are employed to demonstrate the use of a micropolar continuum in overcoming the numerical difficulties encountered in application of finite element method in standard Cauchy–Boltzmann continuum. Three examples of failure analysis involving a deep excavation, shallow foundation, and a retaining wall are presented. In all these cases, it is observed that the length scale introduced in the polar continuum regularizes the incremental boundary value problem and allows the numerical simulation to be continued until a clear collapse mechanism is achieved. The issue of grain size effect is also discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
7.
Two distinct age estimates for eclogite-facies metamorphism in the Sanbagawa belt have been proposed: (i) c.  120–110 Ma based on a zircon SHRIMP age for the Western Iratsu unit and (ii) c.  88–89 Ma based on a garnet–omphacite Lu–Hf isochron age from the Seba and Kotsu eclogite units. Despite the contrasting estimates of formation ages, petrological studies suggest the formation conditions of the Western Iratsu unit are indistinguishable from those of the other two units—all ∼20 kbar and 600–650 °C. Studies of the associated geological structures suggest the Seba and Western Iratsu units are parts of a larger semi-continuous eclogite unit. A combination of geochronological and petrological studies for the Western Iratsu eclogite offers a resolution to this discrepancy in age estimates. New Lu–Hf dating for the Western Iratsu eclogite yields an age of 115.9 ± 0.5 Ma that is compatible with the zircon SHRIMP age. However, petrological studies show that there was significant garnet growth in the Western Iratsu eclogite before eclogite facies metamorphism, and the early core growth is associated with a strong concentration of Lu. Pre-eclogite facies garnet (Grt1) includes epidote–amphibolite facies parageneses equilibrated at 550–650 °C and ∼10 kbar, and this is overgrown by prograde eclogite facies garnet (Grt2). The Lu–Hf age of c.  116 Ma is strongly skewed to the isotopic composition of Grt1 and is interpreted to reflect the age of the pre-eclogite phase. The considerable time gap ( c.  27 Myr) between the two Lu–Hf ages suggests they may be related to separate tectonic events or distinct phases in the evolution of the Sanbagawa subduction zone.  相似文献   
8.
Measurements of 18O concentrations in precipitation, soil solution, spring and runoff are used to determine water transit time in the small granitic Strengbach catchment (0·8 km2; 883–1146 m above sea level) located in the Vosges Mountains of northeastern France. Water transit times were calculated by applying the exponential, exponential piston and dispersion models of the FlowPC program to isotopic input (rainfall) and output (spring and stream water) data sets during the period 1989–95. The input function of the model was modified compared with the former version of the model and estimated by a deterministic approach based on a simplified hydrological balance. The fit between observed and calculated output data showed marked improvements compared with results obtained using the initial version of the model. An exponential piston version of the model applied to spring water indicates a 38·5 month mean transit time, which suggests that the volume in the aquifer, expressed in water depth, is 2·4 m. A considerable thickness (>45 m) of fractured bedrock may be involved for such a volume of water to be stored in the aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
9.
Green Lake Landslide is an ancient giant rock slide in gneiss and granodiorite located in the deeply glaciated Fiordland region of New Zealand. The landslide covers an area of 45 km2 and has a volume of about 27 km3. It is believed to be New Zealand's largest landslide, and possibly the largest landslide of its type on Earth. It is one of 39 known very large (106–107 m3) and giant (≥108 m3) postglacial landslides in Fiordland discussed in the paper. Green Lake Landslide resulted in the collapse of a 9 km segment of the southern Hunter Mountains. Slide debris moved up to 2.5 km laterally and 700 m vertically, and formed a landslide dam about 800 m high, impounding a lake about 11 km long that was eventually infilled with sediments. Geomorphic evidence supported by radiocarbon dating indicates that Green Lake Landslide probably occurred 12 000–13 000 years ago, near the end of the last (Otira) glaciation. The landslide is described, and its geomorphic significance, age, failure mechanism, cause, and relevance in the region are discussed, in relation to other large landslides and recent earthquake-induced landslides in Fiordland. The slope failure occurred on a low-angle fault zone undercut by glacial erosion, and was probably triggered by strong shaking (MM IX–X) associated with a large (≥ M 7.5–8) earthquake, on the Alpine Fault c. 80 km to the northwest. Geology was a major factor that controlled the style and size of Green Lake landslide, and in that respect it is significantly different from most other gigantic landslides. Future large earthquakes on the Alpine Fault in Fiordland are likely to trigger more very large and giant landslides across the region, causing ground damage and devastation on a scale that has not occurred during the last 160 years, with potentially disastrous effects on towns, tourist centres, roads, and infrastructure. The probability of such an event occurring within the next 50 years may be as high as 45%.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号