共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents novel visualization techniques to simplify representation of the fourth‐order material stiffness tensor as a set of three‐dimensional geometric objects. Stiffness visualization aids in understanding the complex stiffness characteristics of highly non‐linear constitutive models including modelled material anisotropy and loading path dependent stiffness variation. Stiffness visualization is relevant for understanding the relationship of material stiffness to global behaviour in the analysis of a boundary value problem. The spherical pulse stiffness visualization method, developed in the acoustics field, is extended to visualize stiffness of geomaterials using three three‐dimensional objects. This method is limited to relatively simple constitutive models with symmetric stiffness matrices insensitive to loading magnitude and direction. A strain dependent stiffness visualization method is developed that allows the examination of material stiffness for a range of loading directions and is suitable for highly non‐linear and path dependent material models. The proposed stiffness visualization can be represented as 3‐D, 2‐D and 1‐D objects. The visualization technique is used to represent material stiffness and its evolution during simulated soil laboratory tests and deep excavation construction. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
2.
A survey is presented of some recent developments of the numerical techniques for back analysis in the field of geomechanics, with particular reference to tunnelling problems. In the spirit of Terzaghi's observational design method, these techniques are seen as practical tools for interpreting the available field measurements, in order to reduce the uncertainties that in many instances affect the parameters governing the solution of complex geomechanics problems. Both deterministic and probabilistic viewpoints are considered and some significant applications to practical problems are illustrated. 相似文献
3.
Traditional approaches in contact mechanics demand complicated search algorithms at the interface between the contacting bodies. Recently, a new contact method based on the concept of a third medium has been developed, which overcomes the drawbacks of conventional contact mechanics techniques. This new scheme is based on a space filling mesh, in which the contacting bodies can move and interact. The ability and accuracy of this method in predicting displacements, as well as the contact forces, is validated by solving selected numerical examples. The potential merits of this method for analysing geotechnical problems by the finite element method are addressed. 相似文献
4.
5.
6.
A coupling scheme for boundary and finite elements using joint elements is proposed which includes the consideration of body forces. In this scheme the boundary and joint elements are formulated in a similar way as finite elements (i.e., the equivalent FE procedure). These joint elements are efficiently used to combine different BE regions. For the evaluation of a body forces, two methods are compared on computational efficiency and it is found that the method using Galerkin tensor is more efficient than the method dividing the problem domain into several internal cells. Two main geotechnical problems considering self weight are numerically examined using this coupling procedure. 相似文献
7.
Four classical geomechanics problems involving semi-infinite linear elastic media have been solved numerically using recently developed mapped infinite elements coupled to finite elements.The effect of the remoteness of the truncated boundary and the location of infinite element coupling on solution accuracy has been studied. The results of conventional analyses using finite elements over a relatively large but restricted region are compared to the coupled analyses. Comparison of the results shows that for the same number of degrees of freedom the performance of the coupled solutions is superior to the conventional approach with respect to accuracy of solution and computational efficiency. Finally, some general guidelines are proposed for the efficient numerical solution of these types of problems using the coupled finite/infinite element approach. 相似文献
8.
This paper presents a rational approach to the finite strain analysis of elastic-plastic materials. An updated incremental finite element technique was applied to problems of shallow foundations of homogeneous as well as multilayer soils. This was based on a variational principle which is suitable for such problems. 相似文献
9.
Large deformation soil behavior underpins the operation and performance for a wide range of key geotechnical structures and needs to be properly considered in their modeling, analysis, and design. The material point method (MPM) has gained increasing popularity recently over conventional numerical methods such as finite element method (FEM) in tackling large deformation problems. In this study, we present a novel hierarchical coupling scheme to integrate MPM with discrete element method (DEM) for multiscale modeling of large deformation in geomechanics. The MPM is employed to treat a typical boundary value problem that may experience large deformation, and the DEM is used to derive the nonlinear material response from small strain to finite strain required by MPM for each of its material points. The proposed coupling framework not only inherits the advantages of MPM in tackling large deformation engineering problems over the use of FEM (eg, no need for remeshing to avoid mesh distortion in FEM), but also helps avoid the need for complicated, phenomenological assumptions on constitutive material models for soil exhibiting high nonlinearity at finite strain. The proposed framework lends great convenience for us to relate rich grain-scale information and key micromechanical mechanisms to macroscopic observations of granular soils over all deformation levels, from initial small-strain stage en route to large deformation regime before failure. Several classic geomechanics examples are used to demonstrate the key features the new MPM/DEM framework can offer on large deformation simulations, including biaxial compression test, rigid footing, soil-pipe interaction, and soil column collapse. 相似文献
10.
对于超固结黏土和密实砂土等软化材料或非关联塑性材料组成的地基、边坡及挡土墙墙后土体,在其破坏过程中,会产生应变局部化现象,使得控制方程的类型发生改变,从而导致出现数值解不惟一和解的网格相关性等现象。为了克服这些数值困难,基于强间断分析方法,及单元内嵌不连续面的有限元模型,对地基、土坡、墙后土体的渐进破坏过程进行了数值模拟。计算结果表明,单元内嵌不连续面模型可以有效地模拟土工结构失稳破坏过程,并且能够明显地改善采用常规有限元方法所产生的网格尺寸相关性问题。这一方法可作为传统极限平衡法进行稳定分析、承载力分析的有益补充。 相似文献
11.
受压构件本构失稳的折迭突变模型 总被引:5,自引:2,他引:5
材料或构件本构失稳问题的类型可归结为突变理论中的折迭突变,从高强度素混凝土轴心受压构件的本构关系曲线表达出发导得的折迭突变模型,可以给出构件的脆坏判据,对构件的延性和脆性破坏路径作类似于几何稳定问题的后屈曲分析,建模时按实际将试验机刚度作为有限量而得到的加载参数能量输入率,可正确地描述构件本构关系曲线弱化段的系统稳定性,计算了混凝土楼柱体脆坏对加载装置造成的荷载效应。 相似文献
12.
A discrete element model to link the microseismic energies recorded in caprock to geomechanics 总被引:1,自引:0,他引:1
A discrete element model is presented to study slip-induced microseismic events along weak planes and crack-induced microseismic events within the intact rock for a representative elementary volume, REV, in the caprock of Weyburn reservoir. Also, the effect of varying factors such as orientation, coefficient of friction and elasticity of the weak plane on release of microseismic energies is studied. According to the results, for the conditions studied in this paper, the magnitudes of slip-induced events range from ~?1 to ?6, while crack-induced events range from ~?7 to ?11. Considering the capability of geophones, this suggests that events “recorded” in the caprock are more likely to have slip origins along weak planes than having crack origins within the intact rock. In order to show the applicability of the model in practice, the events recorded in the caprock of Weyburn from September to November of 2010 are analyzed. Also, a simple model is presented that correlates the amount of consumed energy per volume of the REV with the seismic energy released due to stick–slips along a weak plane. The results show that weak planes can be emissive even long before the failure of their surrounding is reached, and therefore, there can be a level of tolerance for the observed microseismic events in the caprock. 相似文献
13.
Shahid Ahmad 《国际地质力学数值与分析法杂志》1988,12(4):401-417
This paper presents the application of an advanced BEM for periodic and transient dynamic stress analyses of a class of geomechanics problems. For transient dynamic analysis, the problem is first solved in the Laplace transform space, which happens to be similar to the periodic dynamic analysis, and then the time domain solution is obtained by numerical inversion of transform domain solutions. The numerical implementation of the BEM used to present the results in this paper is complete and most general available to date. It is capable of treating very large, multi-layered problems by substructuring and satisfying the equilibrium and compatibilities at the interfaces. With the help of this substructuring, capability problems related to layered media and soil–structure interaction have been analysed. A number of examples are presented and through comparisons with available analytical and numerical results, the applicability and usefulness of the present analysis to real geomechanical problems are established. 相似文献
14.
This paper presents the complete formulation for the application of the Boundary Element Method to solve non-tension material problems. The formulation is based on including an extra term due to an initial stress field into the boundary integral statement. This is then used to iterate the solution until a state of non-tension is achieved. The resulting iteration process is very simple to apply and basically consists only of a single matrix–vector product. The applications show that accurate resultscan be obtained for boundary discretizations involving a small number of unknowns. Whenever possible, results are compared with analytical solutions or finite elements. 相似文献
15.
Three constitutive models of soil are used in finite element analyses of lateral earth pressure and bearing capacity. The three models are an elasto-plastic formulation derived from the Mohr-Coulomb law, a similar model with the plastic dilatancy removed, and a strain hardening model with a capped yield criterion. Stiffness formulations are described; the non-dilatant model has a non-symmetric stiffness. The results for the retaining walls are in close agreement with classical soil mechanics, but the bearing capacity analyses greatly overestimate the bearing capacity. The patterns of motion are, however, reasonable. Reasons for the discripancies in the bearing capacity case include: (a) the elements are too stiff and do not permit sliding on discrete failure planes; (b) the bearing capacity problem is itself not well settled theoretically; (c) very fine element divisions are necessary in areas of strong stress gradients and (d) rotation of principal stresses is significant. 相似文献
16.
This paper focuses on the geometry modelling and numerical analysis of microstructures of geomaterials employing the concept of image‐based engineering. The novel modelling and analysis techniques with digital images are incorporated with the mathematical homogenization method to study the interaction between individual phases, each of whose shape and spatial distribution are irregular. Owing to the distinctive features of these computational techniques, the evaluation of homogenized properties for geomaterials provides the reliable information about the micro‐ or macroscopic mechanical behaviours for engineering practice. It is, naturally, inevitable that engineers' demands on safety and efficient design place emphasis on quantitative estimates for these values. Thus, calibration accompanied with actual measurements comes within the scope of this study so that these properties would be realistic and practical from the engineering viewpoints. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
17.
C. S. Desai 《国际地质力学数值与分析法杂志》1980,4(4):361-375
A new concept based on the use of a function expressed as a (complete) polynomial expansion in terms of the three invariants of the stress tensor is proposed for deriving yield, failure and plastic potential functions for use in plasticity based constitutive laws. A mathematical interpretation and physical meaning of the proposed concept are provided by using the idea of the singular nature of constiutive matrices in incremental hypoelastic laws. It is suggested that the proposed function and (polynomial) forms of material moduli can be synonymous. A number of specialized forms of the general function are adopted and their values at failure from advanced three-dimensional tests for a number of (geological) media are evaluated. The results indicate the possibility that there exist invariant numbers associated with the functions(s) that may apply to a wide range of materials. Some ideas on implementation of the proposed concept are also presented. 相似文献
18.
岩石结构稳定性问题是岩土工程实践中迫切需要解决的重要课题之一。文章以地震为例,讨论了地质灾害的局部化特征,介绍了经典弹、塑性理论的某些缺陷及梯度塑性理论的几点优越性:(1)控制方程总是适定的;(2)病态网格依赖性消失;(3)局部化带宽度由材料的内部长度完全确定;(4)可对岩石结构的尺寸效应及失稳回跳进行合理解释和预测;(5)对预测宏观及微观问题均比较有效。介绍了基于梯度塑性理论的岩石变形、破坏及稳定性研究进展。梯度塑性理论可用于研究单轴压缩条件下,岩石试件发生剪切破坏时全程应力一应变曲线、尺寸效应、剪切带倾角尺寸效应及失稳回跳等问题。它们对土木工程及岩土工程均十分重要。若将单轴压缩岩样比拟为矿柱,则该失稳判据即为矿柱岩爆准则。梯度塑性理论可用于研究韧性断层带内部应变、应变率分布规律、断层带错动位移及带内孔隙度分布规律,为韧性断层带定量分析提供了新的手段。此外,该理论还可对直剪试验机——岩样系统不稳定性进行分析,系统失稳可比拟为断层岩爆。发展基于梯度塑性理论尺度律及失稳判据等解析解一方面可加深对岩石变形、破坏的理解;另一方面。还可用来检验数值结果的正确性。 相似文献
19.
由多个分离基础组成的多基础系统是常用的海洋结构基础型式。基于破坏包络面理论,分析了砂土地基多基础系统的失效模式,建立了相应的承载力计算方法,并验证了计算方法的可行性。对比分析了单一基础和多基础系统不同荷载路径下的荷载安全系数,探讨了破坏包络面理论与分项系数法相结合的基础承载力计算方法。失效模式的分析表明,由于水平荷载的增大,四腿平台结构迎浪侧基础首先到达破坏包络线,其失效模式属于滑动失稳,但由于基础间的运动约束,其并不会出现真正的滑移破坏。随着水平荷载进一步地增大,迎浪侧基础承担的水平和竖向荷载不断减小,导致背浪侧基础受到不断增大的荷载。最终,背浪侧基础也到达破坏包络线,多基础系统失效。分析表明,荷载路径对基础的荷载安全系数有决定性的影响,计算基础的荷载安全系数需指明相应的荷载路径。鉴于破坏包络面的大小和形状取决于众多因素,基础设计时需采用特定工况下的破坏包络面进行承载力计算。 相似文献
20.
Jacques Desrues Albert Argilaga Denis Caillerie Gaël Combe Trung Kiên Nguyen Vincent Richefeu Stefano Dal Pont 《国际地质力学数值与分析法杂志》2019,43(5):919-955
Double-scale numerical methods constitute an effective tool for simultaneously representing the complex nature of geomaterials and treating real-scale engineering problems such as a tunnel excavation or a pressuremetre at a reasonable numerical cost. This paper presents an approach coupling discrete elements (DEM) at the microscale with finite elements (FEM) at the macroscale. In this approach, a DEM-based numerical constitutive law is embedded into a standard FEM formulation. In this regard, an exhaustive discussion is presented on how a 2D/3D granular assembly can be used to generate, step by step along the overall computation process, a consistent Numerically Homogenised Law. The paper also focuses on some recent developments including a comprehensive discussion of the efficiency of Newton-like operators, the introduction of a regularisation technique at the macroscale by means of a second gradient framework, and the development of parallelisation techniques to alleviate the computational cost of the proposed approach. Some real-scale problems taking into account the material spatial variability are illustrated, proving the numerical efficiency of the proposed approach and the benefit of a particle-based strategy. 相似文献