首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   7篇
  国内免费   3篇
测绘学   2篇
大气科学   4篇
地球物理   34篇
地质学   11篇
海洋学   1篇
综合类   2篇
自然地理   10篇
  2024年   1篇
  2023年   1篇
  2021年   4篇
  2020年   6篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2014年   3篇
  2013年   6篇
  2012年   5篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   6篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1988年   1篇
排序方式: 共有64条查询结果,搜索用时 0 毫秒
1.
Acidic species, such as Nitrate, in polar snow and firn layers are “reversibly” deposited, and are sufficiently volatile to undergo significant postdepositional exchange between snow/firn and the atmosphere. Through comparison of the snowpit and snowpack nitrate concentrations from central East Antarctica and the headwater of ürumqi River, we conclude that the nitrate peaks in the uppermost surface snow layers in central Antarctica are not related to an atmospheric signal and must account for post-depositional effects. Such effects, however, are not found in the surface snowpack nitrate profiles from the headwater of ürumqi River. Two reasons may account for the post-depositional difference. At first, nitrate in the polar snow and firn layers appears to be hydrated ion, which can be taken up by the atmosphere, while at the headwater of ürumqi River it seems mainly as mineral ion, which assembles the behavior of aerosol-derived species that are “irreversibly” deposited and do not undergo significant post-depositional exchange with the atmosphere. Secondly, the chemical features of the snow and ice on the Antarctica are mainly determined by wet deposition, to the contrary, dry deposition is more significant at the headwater of lUrumqi River than that on the East Antarctic Plateau.  相似文献   
2.
Previous “fraction of young water” (Fyw) estimates based on relative annual isotopic amplitudes in precipitation (Ap) and streamflow (As) produced low Fyw values in mountain catchments, which is contrary to extensive research that reports rapid water transmission in mountains. This study investigated this discrepancy by testing the effect of snow accumulation on the model that underpins the Fyw method. A Monte-Carlo analysis of simulations for 20,000 randomly-generated catchment model configurations used 10 years of precipitation inputs for the Upper Elbow River catchment in the Rocky Mountains (Alberta, Canada) to model discharge with and without snowpack storage of winter precipitation. Neither direct nor modified precipitation input produced a 1:1 relationship between As/Ap and Fyw, undermining the applicability of the original Fyw method in mountain watersheds with large seasonal snow accumulation. With snowpack-modified input a given As/Ap ratio corresponds to a range of Fyw values, which can still provide semi-quantitative information. In the small (435 km2) Elbow River catchment a Fyw range of 7–23% supports previous findings of rapid transmission in mountain catchments. Further analysis showed that the improved discharge prediction (Nash–Sutcliffe efficiency > 0.9) correlates with higher Fyw values and demonstrated that the interannual shifts in δ18O can be used to estimate of new water (<1 year) fraction in winter streamflow, and the estimate of 20% for the Elbow River further supports rapid transmission in mountain catchments.  相似文献   
3.
Snowpack dynamics through October 2014–June 2017 were described for a forested, sub‐alpine field site in southeastern Wyoming. Point measurements of wetness and density were combined with numerical modeling and continuous time series of snow depth, snow temperature, and snowpack outflow to identify 5 major classes of distinct snowpack conditions. Class (i) is characterized by no snowpack outflow and variable average snowpack temperature and density. Class (ii) is characterized by short durations of liquid water in the upper snowpack, snowpack outflow values of 0.0008–0.005 cm hr?1, an increase in snowpack temperature, and average snow density between 0.25–0.35 g cm?3. Class (iii) is characterized by a partially saturated wetness profile, snowpack outflow values of 0.005–0.25 cm hr?1, snowpack temperature near 0 °C, and average snow density between 0.25–0.40 g cm?3. Class (iv) is characterized by strong diurnal snowpack outflow pattern with values as high as 0.75 cm hr?1, stable snowpack temperature near 0 °C, and stable average snow density between 0.35–0.45 g cm?3. Class (v) occurs intermittently between Classes (ii)–(iv) and displays low snowpack outflow values between 0.0008–0.04 cm hr?1, a slight decrease in temperature relative to the preceding class, and similar densities to the preceding class. Numerical modeling of snowpack properties with SNOWPACK using both the Storage Threshold scheme and Richards' equation was used to quantify the effect of snowpack capillarity on predictions of snowpack outflow and other snowpack properties. Results indicate that both simulations are able to predict snow depth, snow temperature, and snow density reasonably well with little difference between the 2 water transport schemes. Richards' equation more accurately simulates the timing of snowpack outflow over the Storage Threshold scheme, especially early in the melt season and at diurnal timescales.  相似文献   
4.
新疆坎儿井现状及其发展   总被引:2,自引:0,他引:2  
简述了新疆坎儿井的构成、特点、研究意义,分析了坎儿井衰退状况及其原因,列举了已进行的坎儿井保护工作,提出了坎儿井于枯断流的综合治理对策及今后的发展方向。  相似文献   
5.
Seasonal snowpacks in marginal snow environments are typically warm and nearly isothermal, exhibiting high inter‐ and intra‐annual variability. Measurements of snow depth and snow water equivalent were made across a small subalpine catchment in the Australian Alps over two snow seasons in order to investigate the extent and implications of snowpack spatial variability in this marginal setting. The distribution and dynamics of the snowpack were found to be influenced by upwind terrain, vegetation, solar radiation, and slope. The role of upwind vegetation was quantified using a novel parameter based on gridded vegetation height. The elevation range of the catchment was relatively modest (185 m), and elevation impacted distribution but not dynamics. Two characteristic features of marginal snowpack behaviour are presented. Firstly, the evolution of the snowpack is described in terms of a relatively unstable accumulation state and a highly stable ablation state, as revealed by temporal variations in the mean and standard deviation of snow water equivalent. Secondly, the validity of partitioning the snow season into distinct accumulation and ablation phases is shown to be compromised in such a setting. Snow at the most marginal locations may undergo complete melt several times during a season and, even where snow cover is more persistent, ablation processes begin to have an effect on the distribution of the snowpack early in the season. Our results are consistent with previous research showing that individual point measurements are unable to fully represent the variability in the snowpack across a catchment, and we show that recognising and addressing this variability are particularly important for studies in marginal snow environments.  相似文献   
6.
A one‐dimensional energy and mass balance snow model (SNTHERM) has been modified for use with supraglacial snowpacks and applied to a point on Haut Glacier d'Arolla, Switzerland. It has been adapted to incorporate the underlying glacier ice and a site‐specific, empirically derived albedo routine. Model performance was tested against continuous measurements of snow depth and meltwater outflow from the base of the snowpack, and intermittent measurements of surface albedo and snowpack density profiles collected during the 1993 and 2000 melt seasons. Snow and ice ablation was simulated accurately. The timing of the daily pattern of meltwater outflow was well reproduced, although magnitudes were generally underestimated, possibly indicating preferential flow into the snowpack lysimeter. The model was used to assess the quantity of meltwater stored temporally within the unsaturated snowpack and meltwater percolation rates, which were found to be in agreement with dye tracer experiments undertaken on this glacier. As with other energy balance studies on alpine valley glaciers, the energy available for melt was dominated by net radiation (64%), with a sizable contribution from sensible heat flux (36%) and with a negligible latent heat flux overall, although there was more complex temporal variation on diurnal timescales. A basic sensitivity analysis indicated that melt rates were most sensitive to radiation, air temperature and snowpack density, indicating the need to accurately extrapolate/interpolate these variables when developing a spatially distributed framework for this model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
7.
澜沧江上游山地典型区不同利用方式的土壤肥力性状   总被引:5,自引:1,他引:5  
选取澜沧江上游山地8种典型土壤利用方式对土壤性质变化进行对比研究,结果表明:土壤有机质、全氮、有效氮、速效磷、速效钾、铵态氮、硝态氮之间存在显著差异,但垂直空间变异上差异不大。天然阔叶林破坏后,无论是次生林还是人工种植的经济林或是坡耕地和荒地,土壤养分均呈现不同程度的衰减退化。综合土壤7项指标计算定量反映土壤退化和改善程度的退化指数,表明针叶林、坡耕地、禾草荒地及桉树林退化最为严重。  相似文献   
8.
Daily observations from automated snowpack telemetry (SNOTEL) stations from within the drainage basin of the Great Salt Lake over the period from 1982 to 2007 are analyzed. The major finding is a shift toward an earlier date of peak snow water equivalent (SWE) by around fifteen days. Less robust findings are reductions in the amounts of peak SWE and 1 April SWE. This suggests increased chances of late-summer water shortages, especially when combined with rapid recent population growth. Less freshwater is likely to be available to flow into the Great Salt Lake, increasing its salinity and potentially affecting its ecology.  相似文献   
9.
The isotopic composition of solid and liquid portions of natural melting snowpack is investigated in detail by the separating of liquid water from snow grains at different depths of the snowpack. The slope of the δD–δ18O line for the liquid phase is found to be lower than for the solid phase. This is proved to be due to the isotopic fractionation occurring in the melt–freeze mass exchange within the snowpack. Melting of the snowpack has no clear impact on the δD–δ18O line for the solid phase, but the slope of the δD–δ18O line for the liquid shows an overall slight decrease in the melting period. When the snowpack is refrozen, the refreezing process would inevitably cause the slope of the solid phase to decrease because of the discrepancy between the slopes of the two phases. Thus the slope of the solid would become lower and lower as the diurnal melt–freeze episodes cycle throughout the melting season. This effect is then demonstrated by looking into the isotopic composition changes of glacier firn. The extent of the effect depends on the snowpack properties and environmental conditions. The slope changes also result in a decreasing trend in deuterium excess. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
10.
Long-term watershed experiments provide the opportunity to understand forest hydrology responses to past logging, road construction, forest regrowth, and their interactions with climate and geomorphic processes such as road-related landslides. We examined a 50-year record from paired-watershed experiments in the H. J. Andrews Experimental Forest, Oregon, USA in which 125 to 450-year-old conifer forests were harvested in the 1960s and 1970s and converted to planted conifer forests. We evaluated how quickflow and delayed flow for 1222 events in treated and reference watersheds changed by season after clearcutting and road construction, including 50 years of growth of planted forest, major floods, and multi-decade reductions in snowpack. Quickflow runoff early in the water year (fall) increased by up to +99% in the first decade, declining to below pre-harvest levels (−1% to −15%) by the third to fifth decade after clearcutting. Fall delayed flow responded more dramatically than quickflow and fell below pre-treatment levels in all watersheds by the fifth decade, consistent with increased transpiration in the planted forests. Quickflow increased less (+12% to 70%) during the winter and spring but remained higher than pre-treatment levels throughout the fourth or fifth decade, potentially impacted by post-harvest burning, roads, and landslides. Quickflow remained high throughout the 50-year period of study, and much higher than delayed flow in the last two decades in a watershed in which road-related changes in flow routing and debris flows after the flood of record increased network connectivity. A long-term decline in regional snowpack was not clearly associated with responses of treated vs. reference watersheds. Hydrologic processes altered by harvest of old-growth conifer forest more than 50 years ago (transpiration, interception, snowmelt, and flow routing) continued to modify streamflow, with no clear evidence of hydrologic recovery. These findings underscore the importance of continued long-term watershed experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号