首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252960篇
  免费   5157篇
  国内免费   3336篇
测绘学   6758篇
大气科学   18765篇
地球物理   53147篇
地质学   87438篇
海洋学   20986篇
天文学   55642篇
综合类   983篇
自然地理   17734篇
  2021年   2207篇
  2020年   2566篇
  2019年   2827篇
  2018年   2983篇
  2017年   2674篇
  2016年   5402篇
  2015年   4159篇
  2014年   6868篇
  2013年   14156篇
  2012年   6245篇
  2011年   7406篇
  2010年   6453篇
  2009年   9109篇
  2008年   7982篇
  2007年   7373篇
  2006年   9589篇
  2005年   7614篇
  2004年   7510篇
  2003年   6999篇
  2002年   6639篇
  2001年   5940篇
  2000年   5903篇
  1999年   5189篇
  1998年   5221篇
  1997年   5010篇
  1996年   4661篇
  1995年   4411篇
  1994年   4087篇
  1993年   3832篇
  1992年   3616篇
  1991年   3588篇
  1990年   3755篇
  1989年   3503篇
  1988年   3294篇
  1987年   3842篇
  1986年   3401篇
  1985年   4213篇
  1984年   4727篇
  1983年   4401篇
  1982年   4307篇
  1981年   3911篇
  1980年   3634篇
  1979年   3506篇
  1978年   3479篇
  1977年   3277篇
  1976年   3044篇
  1975年   2959篇
  1974年   2917篇
  1973年   3076篇
  1972年   2026篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Makarov  V.I.  Filippov  B.P. 《Solar physics》2003,214(1):55-63
We have studied the variations of the height of polar crown prominences according to daily observations of the Sun at the Kodaikanal Observatory (India) during 1905–1975. Polar ring filaments at latitudes 60°–80° are related to the polar magnetic field reversal. A double decrease of the height of polar ring filaments was found in the course of their migration from 40°to the poles. We estimated the limiting height of the equilibrium of polar ring filaments from the stability condition of a strong electric current. We found that the transition from large-scale to small-scale ring filaments reduces the critical height of the stability for the prominences. A model of an inverse-polarity filament was used.  相似文献   
992.
Heating occurs in Titan's stratosphere from the absorption of incident solar radiation by methane and aerosols. About 10% of the incident sunlight reaches Titan's surface and causes heating there. Thermal radiation redistributes heat within the atmosphere and cools to space. The resulting vertical temperature profile is stable against convection and a state of radiative equilibrium is established. Equating theoretical and observed temperature profiles enables an empirical determination of the vertical distribution of thermal opacity. A uniformly mixed aerosol is responsible for most of the opacity in the stratosphere, whereas collision-induced absorption of gases is the main contributor in the troposphere. Occasional clouds are observed in the troposphere in spite of the large degrees of methane supersaturation found there. Photochemistry converts CH4 and N2 into more complex hydrocarbons and nitriles in the stratosphere and above. Thin ice clouds of trace organics are formed in the winter and early spring polar regions of the lower stratosphere. Precipitating ice particles serve as condensation sites for supersaturated methane vapor in the troposphere below, resulting in lowered methane degrees of supersaturation in the polar regions. Latitudinal variations of stratospheric temperature are seasonal, and lag instantaneous response to solar irradiation by about one season for two reasons: (1) an actual instantaneous thermal response to a latitudinal distribution of absorbing gases, themselves out of phase with the sun by about one season, and (2) a sluggish dynamical response of the stratosphere to the latitudinal transport of angular momentum, induced by radiative heating and cooling. Mean vertical abundances of stratospheric organics and aerosols are determined primarily by atmospheric chemistry and condensation, whereas latitudinal distributions are more influenced by meridional circulations. In addition to preferential scavenging by precipitating ice particles from above, the polar depletion of supersaturated methane results from periodic scavenging by short-lived tropospheric clouds, coupled with the steady poleward march of the continuously drying atmosphere due to meridional transport.  相似文献   
993.
994.
995.
996.
997.
Mantle peridotites were early exposed at the sea-floor of the Jurassic Tethys derived from the subcontinental mantle of the Europe-Adria system. During continental rifting and oceanic spreading, these lithospheric peri-dotites were percolated via diffuse reactive porous flowby melt fractions produced by near-fractional melting of the upwelling asthenosphere. Ascending melts inter-acted with the lower lithosphere, dissolving pyroxenes and precipitating olivine, and crystallized at shallower levels in the mantle column causing melt impregnation.Subsequent focused porous flow formed replacive dunitechannels, cutting the impregnated oeridotites, which were conduits for upward migration of MORB-type liq-uids. Melt migration produced depletionlrefertilization and significant heating of the percolatedlimpregnated mantle, i.e the thermochemical erosion of the litho-sphere. Impregnated and thermally modified lithos-pheric mantle was cooled by conductive heat loss dur-ing progressive lithosphere thinning and was intrudeaby MORB magmas, which formed Mg-rich and Fe-richgabbroic dykes and bodies. Alpine-Apennine ophiolitic peridotites record the deep-seated migration of melts which changed their compositions and dynamics during the rift evolution. The thermochemical erosion of the lithospheric mantle by the ascending asthenospheric melts, which induces significant compositional and rhe-ological changes in the lower lithosphere, is a major process in the evolution of the continent-ocean transi-tion towards a slow spreading oceanic system.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号