共查询到20条相似文献,搜索用时 15 毫秒
1.
Hundred-meter wide cumulate bodies and decimetric dykelets of gabbro-norites are widespread within the distal ophiolitic peridotites from the Jurassic Ligure-Piemontese oceanic basin, now emplaced in the Alpine–Apennine orogenic system. These peridotites derived from the sub-continental mantle of the pre-Triassic Europe–Adria lithosphere and underwent profound modifications of their structural and compositional characteristics via melt–rock interaction during diffuse percolation by porous flow of upwelling asthenospheric melts. Gabbro-norite cumulates show the peculiar association of high forsteritic olivine, high-Mg# clinopyroxenes and orthopyroxenes and high anorthitic plagioclase with respect to mineral compositions in common ophiolitic and oceanic MORB gabbros. Abundance and early crystallization of magnesian orthopyroxene suggests that parental magmas of the gabbro-noritic cumulates were relatively silica-rich basaltic liquids. Clinopyroxenes and plagioclase have anomalously low Sr and LREE, resulting in highly fractionated C1-normalized LREE patterns in clinopyroxenes and negatively fractionated C1-normalized LREE patterns in plagioclases.Modal mineralogy and mineral major and trace element compositions indicate that these gabbro-norites crystallized from MORB-type basaltic liquids that were strongly depleted in Na, Ti, Zr, Sr and other incompatible trace elements relative to any erupted liquids of MORB-type ophiolites and modern oceanic lithosphere. Computed melt compositions in equilibrium with gabbro-norite clinopyroxenes are closely similar to depleted MORB-type single melt increments after 5–7% of fractional melting of a DM asthenospheric mantle source under spinel-facies conditions.Present knowledge on the ophiolitic peridotites of Monte Maggiore indicate that they were formed by interaction of lithospheric mantle protoliths with depleted, MORB-type single melt increments produced by the ascending asthenosphere. Their composition was progressively modified from olivine-saturated to orthopyroxene-saturated by the early reactive melt–peridotite interaction (i.e., pyroxene dissolution and olivine precipitation).Gabbro-norite cumulates marked the change from diffuse porous flow percolation to intrusion and crystallization when cooling by conducive heat loss became dominant on heating by melt percolation. Progressive upwelling and cooling of the host peridotite during rifting caused transition to more brittle conditions and to hydration and serpentinization.The Monte Maggiore peridotite body was then intruded along fractures by variably evolved, Mg–Al- to Fe–Ti-rich gabbroic dykes. Computed melt compositions in equilibrium with clinopyroxenes from less evolved gabbro dykes are closely similar to aggregated MORBs. The event of gabbro intrusion indicates that aggregated MORB-type liquids: i) migrated through and stagnated in the mantle lithosphere and ii) underwent evolution into shallow ephemeral magma chambers to form the parental magmas of the gabbroic dykes and the basaltic lava flows of the Ligurian oceanic crust. 相似文献
2.
This paper presents an updated review of recent field/structural and petrologic/geochemical studies on orogenic peridotites from the Alpine–Apennine ophiolites (NW Italy). Results provide determinant constraints to the evolution of the lithospheric mantle during passive rifting of the fossil Ligurian Tethys oceanic basin.The pre-rift, spinel lherzolites precursors, preserved in the mantle section of the Ligurian ophiolites, were resident in the lithosphere along an intermediate geothermal gradient (T about 1000 °C, P compatible with spinel-peridotite facies). Passive rifting by far-field tectonic forces induced whole-lithosphere extension and thinning (the a-magmatic stage). After significant thinning of the lithosphere, the passively upwelling asthenosphere underwent decompression melting along the axial zone of extension. Silica-undersaturated melt fractions infiltrated via diffuse/focused porous-flow through the lithospheric mantle under extension (the magmatic stage) and underwent pyroxenes-dissolving/olivine-crystallizing interaction with the percolated host peridotite.Pyroxenes assimilation and olivine deposition modified the melt compositions into silica-saturated. These derivative liquids migrated to shallower, plagioclase-peridotite facies levels, where they stagnated and impregnated/refertilized the lithospheric mantle. Melt thermal advection by melt infiltration heated to temperatures higher than 1200 °C the lithospheric mantle column above the melting asthenosphere.The syn-rift magmatic and tectonic processes induced significant rheological softening/weakening that destabilized the lithospheric mantle of the Europe–Adria plate along the axial zone of extension. The presence of destabilized lithospheric mantle between the future continental margins played a determinant role in promoting the geodynamic evolution from pre-oceanic rifting to oceanic spreading.The active upwelling of hotter/deeper asthenosphere inside the destabilized axial zone promoted transition to active rifting, enhancing continent break-up. Asthenosphere underwent partial melting and formed aggregated MORB liquids that migrated inside high-porosity dunite channels. The MORB liquids formed olivine-gabbro intrusions and pillowed lava flows (the oceanic crustal rocks).This paper evidences the primary role of mantle destabilization by melt infiltration in the geodynamic evolution of the Ligurian Tethys rifting. 相似文献
3.
This study reports a geochemical investigation of two thick basalt sequences, exposed in the Bracco–Levanto ophiolite (northern Apennine, Italy) and in the Balagne ophiolite (central-northern Corsica, France). These ophiolites are considered to represent an oceanward and a continent-near paleogeographic domain of the Jurassic Liguria–Piedmont basin. Trace elements and Nd isotopic compositions were examined to obtain information about: (1) mantle source and melting process and (2) melt–rock reactions during basalt ascent. Whole-rock analyses revealed that the Balagne basalts are slightly enriched in LREE, Nb, and Ta with respect to the Bracco–Levanto counterparts. These variations are paralleled by clinopyroxene chemistry. In particular, clinopyroxene from the Balagne basalts has higher CeN/SmN (0.4–0.3 vs. 0.2) and ZrN/YN (0.9–0.6 vs. 0.4–0.3) than that from the Bracco–Levanto basalts. The basalts from the two ophiolites have homogeneous initial Nd isotopic compositions (initial εNd from +?8.8 to +?8.6), within typical depleted mantle values, thereby excluding an origin from a lithospheric mantle source. These data also reject the involvement of contaminant crustal material, as associated continent-derived clastic sediments and radiolarian cherts have a highly radiogenic Nd isotopic fingerprint (εNd at the time of basalt formation?=???5.5 and ??5.2, respectively). We propose that the Bracco–Levanto and the Balagne basalts formed by partial melts of a depleted mantle source, most likely containing a garnet-bearing enriched component. The decoupling between incompatible elements and Nd isotopic signature can be explained either by different degrees of partial melting of a similar asthenospheric source or by reaction of the ascending melts with a lower crustal crystal mush. Both hypotheses are reconcilable with the formation of these two basalt sequences in different domains of a nascent oceanic basin. 相似文献
4.
Georg Miehe Sabine Miehe Kerstin Bach Jürgen Kluge Karsten Wesche Yang Yongping Liu Jianquan 《Quaternary Research》2011,76(2):243-252
Arid and Alpine ecosystems are known for extreme environmental changes during the Late Quaternary. We hypothesize that the world's largest Alpine arid ecosystem however, the Alpine Steppes of the Tibetan highlands, remained ecologically stable during the LGM and the mid-Holocene. This hypothesis is tested by distributional range of plant species, plant life forms and rate of endemism. The set of character species has a precipitation gradient between 50 and 350 mm/a, testifying for resilience to precipitation changes. 83% of the species have a wider vertical range than 1000 m used as a proxy for resilience to temperature changes. 30% of the species are endemic with 10 endemic genera, including plate-shaped cushions as a unique plant life form. These findings are in line with palaeo-ecological proxies (δ18O, pollen) allowing the assumption that Alpine Steppes persisted during the LGM with 3 to 4 K lower summer temperatures.During the mid-Holocene, forests could have replaced Alpine Steppes in the upper catchments of the Huang He, Yangtze, Mekong, Salween and Yarlung Zhangbo, but not in the interior basins of the north-western highlands, because the basins were then flooded, suppressing forests and supporting the environmental stability of this arid Alpine grassland biome. 相似文献
5.
6.
《Earth》2008,90(3-4):177-195
Since the early 1990's the Paleozoic Uralide Orogen of Russia has been the target of a significant research initiative as part of EUROPROBE and GEODE, both European Science Foundation programmes. One of the main objectives of these research programmes was the determination of the tectonic processes that went into the formation of the orogen. In this review paper we focus on the Late Paleozoic continent–continent collision that took place between Laurussia and Kazakhstania. Research in the Uralides was concentrated around two deep seismic profiles crossing the orogen. These were accompanied by geological, geophysical, geochronological, geochemical, and low-temperature thermochronological studies. The seismic profiles demonstrate that the Uralides has an overall bivergent structural architecture, but with significantly different reflectivity characteristics from one tectonic zone to another. The integration of other types of data sets with the seismic data allows us to interpret what tectonic processes where responsible for the formation of the structural architecture, and when they were active. On the basis of these data, we suggest that the changes in the crustal-scale structural architecture indicate that there was significant partitioning of tectonothermal conditions and deformation from zone to zone across major fault systems, and between the lower and upper crust. Also, a number of the structural features revealed in the bivergent architecture of the orogen formed either in the Neoproterozoic or in the Paleozoic, prior to continent–continent collision. From the end of continent–continent collision to the present, low-temperature thermochronology suggests that the evolution of the Uralides has been dominated by erosion and slow exhumation. Despite some evidence for more recent topographic uplift, it has so far proven difficult to quantify it. 相似文献
7.
8.
9.
The Thermal Structure of the Upper Mantle in Eastern China——Inferred from the Petrological Model 总被引:1,自引:0,他引:1
Cenozoic basalt in eastern China contains abundant ultramafic xenoliths which are specimens of pyrolitesreleased during basaltic magma eruption. A total of 405 P-T data of pyroxene in the ultramafic rocks have beencollected, which present a more precise pyroxene geotherm. The average geothermal gradient in the upper man-tle represented by the pyroxene geotherm is about 3.3℃ / km, which is much less than that derived from theconductive thermal model (≈14℃ / km), implying the great significance of convective heat transfer. The calcu-lation shows that the contributions of convective and conductive heat transfers are 79% and 21%, respectively.The perturbation in the thermal structure of the upper mantle is an important manifestation of thetectonothermal event of Cenozoic continental rifting and intense basaltic volcanism in eastern China. Based onthe pyroxene geotherm and its comparison with the current geothermal field derived from the measurements ofthe surface heat flows, it is suggested that the Moho may be a secondary thermal boundary. The currentgeothermal field and the thermal structure of the lithosphere in eastern China may mainly reflect the result ofthe tectonothermal disturbance in the Neogene-Quaternary, in other words, the lithosphere has just begun toCool. 相似文献
10.
Chao-Nan Hu 《International Geology Review》2018,60(9):1073-1097
The northern margin of the North China Craton (NCC) was an active convergent margin during Palaeozoic and preserves important imprints of magmatic and metasomatic processes associated with oceanic plate subduction. Here, we investigate the mafic–ultramafic rocks in the Xiahabaqin–Sandaogou complexes from the northern NCC including pyroxenite, hornblendites, hornblende gabbro, and their rodingitized counterparts within a serpentinite domain. We present petrological, zircon U–Pb geochronological, and geochemical data to constrain the nature and timing of the magmatic and metasomatic processes in the subduction zone mantle wedge. The rock suites investigated in this study are characterized by low contents of SiO2, Na2O, and K2O, with high CaO, FeO, Fe2O3, and MgO. The rodingitized rocks show markedly high CaO and lower MgO compared to their ultramafic protolith, suggesting extensive post-magmatic infiltration of Ca-rich, Si-poor fluids derived by serpentinization of mantle peridotite. The enrichment of large ion lithophile and light rare earth elements such as Ba, Sr, K, La, and Ce with relative depletion of high field strength elements like Nb, Ta, Zr, and Hf in the ultramafic rocks collectively suggest metasomatism of a fore-arc mantle wedge by fluids released through dehydration of subducted oceanic slab and subduction-derived sediments. Dehydration and decarbonation leading to metasomatic fluid influx and serpentinization of mantle wedge peridotite account for the enriched geochemical signatures for the rodingitized rocks. The zircon grains in these rocks show textures indicating magmatic crystallization followed by fluid-controlled dissolution–precipitation. Magmatic zircons from altered pyroxenite, hornblendite, and rodingitized pyroxenite in Xiahabaqin yield protolith crystallization ages peaks at 396 Ma and 392 Ma and metasomatic grains show ages of 386 Ma, 378 Ma, and 348 Ma. The zircons from hornblendite and basaltic trachyandesite indicate protolith emplacement during 402–388 Ma. Metasomatic zircon grains from rodingitized hornblende gabbro in Sandaogou complex show a wide range of ages as 412 Ma, 398 Ma, 383 Ma, and 380 Ma. The common magmatic zircon ages peaks at 398–388 Ma in most of the rocks suggest a similar time for magma crystallization in the Xiahabaqin and Baiqi during Middle Devonian. Subsequently, repeated pulses fluids and melts resulted in metasomatic reactions in mantle wedge until early Permian. The Lu–Hf analysis of the zircon grains from these rocks display markedly negative εHf(t) values ranging from ?22.4 to ?7.7, suggesting magma derivation from an enriched, hydrated lithospheric mantle through fluid–rock interaction and mantle wedge metasomatism. Rodingitization processes are associated with exhumation of ultramafic mantle wedge rocks within a serpentinized subduction channel close to the subducted slab in response to slab roll back in a long-lasting subduction regime. This study offers insights into magmatic and metasomatic processes of ultramafic rocks in the fore-arc mantle wedge which were exhumed and accreted to an active continental margin during the southward subduction of the Palaeo-Asian oceanic lithosphere beneath the NCC. 相似文献
11.
P. T. Harris P. E. O'Brien P. Quilty A. McMinn D. Holdway N. F. Exon 《Australian Journal of Earth Sciences》2013,60(4):577-591
Digital echo sounding, SeaBeam swath bathymetry data and sediment cores were collected on the continental slope (1500–3700 m water depth) off southeastern Tasmania in order to study sedimentary processes in the vicinity of an ocean disposal site. The new bathymetry data show that the shallower limits of the disposal site are positioned on the seaward edge of a gently dipping (3°) mid‐slope shoulder, between 1200 and 2100 m water depth. The slope below the disposal site is relatively steep (6.5°) and is cut by submarine canyons which lead into the adjacent East Tasman Saddle. The SeaBeam bathymetry data show a small submarine canyon traversing the slope in 2400 m water depth directly downslope from the disposal site, with local slopes of up to 22°. The canyon feeds into a perched basin at 2450 m, which could be acting as a local sediment trap. Short (<90 cm) gravity cores indicate that indurated erosional surfaces characterise the slope environment. The cores contain Upper Cretaceous (upper Campanian) sandstones and siltstones, which in places crop out on the sea floor where they are locally draped by a thin (0–30 cm), modern layer of hemipelagic calcareous ooze. Five cores collected from the vicinity of the disposal site had lead and zinc concentrations in the surface 1 cm of 10.3 ± 5.0 and 39.5 ± 19.6 mg/kg, respectively, significantly greater than the background values (2.9 ± 1.4 for lead and 21.2 ± 5.4 for zinc) which characterise the underlying unit that is composed of the same hemipelagic calcareous ooze. Lead and zinc are constituents of the dumped material, jarosite, which, after mixing with slope sediments, can be used as sediment tracers. One core contains a fining‐upwards bed which is also elevated in lead and zinc. This is interpreted as evidence for dispersal of the jarosite from the disposal site downslope to depths >3000 m via turbidity flows sometime during the past 24 years. Current meter data collected from 30 m above the sea floor over one year at the disposal site show that bottom currents attain speeds of up to 0.46 m/s. The current events are attributed to eddies shed by the East Australia Current. The measured bottom currents are capable of transporting fine‐grained hemipelagic muds and could provide a trigger mechanism for turbidity flows. 相似文献
12.
Molecular biomarkers are the important maturity parameters for sedimentary organic matter.They have also been widely used for determining the maturity of organic matter in ore deposits. However,during the study of organic matter in the Kupferschiefer from the Lubin mine, it had been found that the biomarkers were influenced by sulfide formation. In order to probe into the degree of influence on biomarkers, seven samples collected from a Kupferschiefer section from the Lubin mine were analyzed by various geochemical methods. The results indicated that in the samples with higher copper contents, the values of biomarkers are lower than in the samples with lower copper contents. In highly mineralized samples, hydrogen donation for thermochemical sulfate reduction (TSR) occurred in alkylated phenanthrenes and naphthalenes, leading to the decrease of 12 biomarker parameters during the Kupferschiefer mineralization. 相似文献
13.
E.S. Farahat 《Lithos》2010,120(3-4):293-308
Ophiolites are widely distributed in the Central Eastern Desert (CED) of Egypt, occurring as clusters in the northern (NCEDO) and southern (SCEDO) segments. Mineralogical and geochemical data on the volcanic sections of Wizer (WZO) and Abu Meriewa (AMO) ophiolites as representatives of the NCEDO and SCEDO, respectively, are presented.The WZO volcanic sequence comprises massive metavolcanics of MORB-like compositions intruded by minor boninitic dykes and thrust over island-arc metavolcanic blocks in the mélange matrix. Such transitional MORB-IAT-boninitic magmatic affinities for the WZO metavolcanics suggest that they most likely formed in a protoarc–forearc setting. Chemical compositions of primary clinopyroxene and Cr-spinel relicts from the WZO volcanic section further confirm this interpretation. The compositional variability in the WZO volcanic sequence is comparable with the associated mantle rocks that vary from slightly depleted harzburgites to highly depleted harzburgites containing small dunite bodies, which are residues after MORB, IAT and boninite melt formation, respectively. Source characteristics of the different lava groups from the WZO indicate generation via partial melting of a MORB source which was progressively depleted by melt extraction and variably enriched by subduction zone fluids. MORB-like magma may have been derived from ~ 20% partial melting of an undepleted lherzolite source, leaving slightly depleted harzburgite as a residuum. The generation of island-arc magma can be accounted for by partial melting (~ 15%) of the latter harzburgitic mantle source, whereas boninites may have been derived from partial melting (~ 20%) of a more refractory mantle source previously depleted by melt extraction of MORB and IAT melts, leaving ultra-refractory dunite bodies as residuum.The AMO volcanic unit occurs as highly deformed pillowed metavolcanic rocks in a mélange matrix. They can be categorized geochemically into LREE-depleted (La/YbCN = 0.41–0.50) and LREE-enriched (La/YbCN = 4.7–4.9) lava types that show an island arc to MORB geochemical signature, respectively, signifying a back-arc basin setting. This is consistent, as well, with their mantle section. Source characteristics indicate depleted to slightly enriched mantle sources with overall slight subduction zone geochemical affinities as compared to the WZO.Generally, CED ophiolites show supra-subduction zone geochemical signature with prevalent island arc tholeiitic and minor boninitic affinities in the NCEDO and MORB/island-arc association in the SCEDO. Such differences in geochemical characteristics of the NCEDO and SCEDO, along with the abundance of mature island arc metavolcanics which are close in age (~ 750 Ma) to the ophiolitic rocks, general enrichment in HFSE of ophiolites from north to south, and lack of a crustal break and major shear zones, is best explained by a geotectonic model whereby the CED represents an arc–back-arc system above a southeast-dipping subduction zone. 相似文献
14.
《Geodinamica Acta》2013,26(3):131-138
Radiolarians of Middle Jurassic age (tentatively middle Bathonian) provide the first direct age determination from oceanic sediments associated with the Chenaillet-Montgenèvre ophiolite (Piemonte zone, French-Italian Alps). This datum obtained from radiolarites of the Lago Nero- Replatte thrust sheet is older than those previously established on ophiolite sedimentary covers from this segment of the western Alps. It also shows that Lago Nero-Replatte basal radiolarites are anterior to the youngest intrusives from the overlying Chenaillet s.s. thrust sheet. This chronological relationship implies either a late seafloor spreading-related magmatic activity in places younger than adjacent initial pelagic sedimentation, or more likely that the Lago Nero-Replatte and the Chenaillet s.s. thrust sheets are distinct and distant pieces of lithosphere that were eventually stacked together: the Lago Nero-Replatte unit was trapped within the accretionary wedge while the Chenaillet s.s., of a younger age and in a more distal position with regards to the European margin, was obducted. Regionally, the Lago Nero-Replatte sediments appear to be coeval to other Bathonian supraophiolitic radiolarites exposed in the western Alps. These results strengthen the Bathonian correlation of widespread seafloor spreading in both western Tethys and the central Atlantic ocean. 相似文献
15.
P. K. Gautam A. C. Narayana P. Kiran Kumar P. G. Bhavani M. G. Yadava A. J. T. Jull 《第四纪科学杂志》2021,36(1):138-151
The Indian monsoon carries large amounts of freshwater to the northern Indian Ocean and modulates the upper ocean structure in terms of upwelling and productivity. Freshwater-induced stratification in the upper ocean of the Bay of Bengal is linked to the changes in the Indian monsoon. In this study, we test the usefulness of δ18O and δ13C variability records for Globigerina bulloides and Orbulina universa to infer Indian monsoon variability from a sediment core retrieved from the southwestern Bay of Bengal encompassing the last 46 kyr record. Results show that the northeast monsoon was dominant during the Last Glacial Maximum. Remarkable signatures are observed in the δ18O and δ13C records during the Marine Isotope Stage (MIS) 3 to MIS-1. Our study suggests that Indian monsoon variability is controlled by a complex of factors such as solar insolation, North Atlantic climatic shifts, and coupled ocean–atmospheric variability during the last 46 kyr. 相似文献
16.
The spatial and temporal characteristics of magmatism caused by the Barents–Amerasian Jurassic–Cretaceous plume in conjunction with the geodynamics of destructive transformations of the lithosphere are presented here. The localities of manifestation of magmatism were concentrated mainly out of general contour of the areal occupied by the Siberian superplume, and they demonstrated certain gravitation to the Caledonide–Ellesmeride belts. This suggests an inherited position of both the J–K plume and the initial detachment zone produced by it: this led to formation of the Canadian Basin. The stages in the evolution and character of polycyclic multiphase plume magmatism are substantiated by the geochronology of magmatic provinces in the Arctic region during formation of the Amerasian Basin. 相似文献
17.
Cenozoic lavas from Hainan Island,South China,comprise quartz tholeiite,olivine tholeiite,alkali basalt,and basanite and form a continuous,tholeiite-dominated,compositional spectrum.Highly incompatible elements and their relationships with isotopes in these lavas are shown to be useful in evaluating mantle-source composition,whereas modeling suggests that ratios of elements with bulk partition coefficients significantly larger than those of Nb and Ta may be sensitive to partial melting.Th/Ta and La/Nb ratios of alkali basalts are lower than those of tholeiites,and they are all lower than those of the primitive mantle,These ratios correlate positively with ^207Pb/^204Pb and ^87Sr/^86Sr ratios.Such relationships can be explained by mixing of depleted and enriched source components.A depleted component is indicated by alkali basalt compositions and is similar to some depleted OIB (PREMA).The enriched component,similar to sediment compositions,is indicated by tholeiites with high LILE/HFSE,^207Pb/^204Pb,and ^87Sr/^86Sr ratios.In general,basalts from Hainan and the South China Basin(SCB)share common geochemical characters.e.g.high Rb/Sr,Th/Ta,^207Pb/^206Pb,and low Ba/Th ratios.Such a geochemical trend is comparable to that of EMII-type OIB and best explained as the result of subduction.Occurrence of these characteristics in both continental Hainan basalts and SCB seamout basalts indicates the presence of a South China geochemical domain that exists in the mantle region below the lithosphere. 相似文献
18.
Geotectonics - The tectonic–geodynamic characteristics of the North African–Arabian region are complicated by the interaction of numerous factors. To study this interaction, we... 相似文献
19.
Vestiges of the Kerguelen Mantle Plume in Southern Tibet:Evidence from 123–117 Ma Magmatism in the Dingri Area of the Central Tethys Himalaya
下载免费PDF全文
![点击此处可从《《地质学报》英文版》网站下载免费的PDF全文](/ch/ext_images/free.gif)
YAN Songtao WU Qingsong LI Hu DAI Xuejian ZHU Lidong WANG Jie XIN Chongyang 《《地质学报》英文版》2023,97(4):1163-1180
The widely distributed Early Cretaceous magmatism in the Tethys Himalaya(TH) of southern Tibet is related to the Kerguelen mantle plume. Associated magmatic activity products are distributed in the eastern TH, where the active age is earlier than the peak ages of the Kerguelen mantle plume. This study investigated magmatic activity of the Dingri area in the central TH which was coeval with the Kerguelen mantle plume. The intrusion in the Dingri area contains diabases and monzonites. The zircon a... 相似文献
20.
P–T conditions during skarn formation in the 75.5 Ma old Ocna de Fier-Dognecea (SW Romania) ore district are assessed in this
work using a combination of petrogenetic grids, Berman's TWEEQU programme, and several independent geothermobarometers. These
were applied both to hornfelses surrounding the skarn and to the granodiorite which caused the skarn and contact metamorphism.
The results are consistent and point to a peak metamorphic temperature of 700 ± 50 °C, decreasing away from the contact, and
to a pressure of 2.8 ± 1 kbar, equivalent to ∼10 km depth in the region. These results quantify the qualitative idea that
skarn mineralisation normally forms in a high T, low P contact metamorphic environment.
Received: 13 February 1998 / Accepted: 8 April 1999 相似文献