首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279989篇
  免费   9494篇
  国内免费   10231篇
测绘学   7905篇
大气科学   25016篇
地球物理   59877篇
地质学   101027篇
海洋学   24197篇
天文学   56686篇
综合类   4167篇
自然地理   20839篇
  2022年   2392篇
  2021年   3635篇
  2020年   3774篇
  2019年   4078篇
  2018年   4462篇
  2017年   4044篇
  2016年   6969篇
  2015年   5370篇
  2014年   8552篇
  2013年   15593篇
  2012年   7600篇
  2011年   8754篇
  2010年   8012篇
  2009年   10628篇
  2008年   9249篇
  2007年   8544篇
  2006年   10601篇
  2005年   8480篇
  2004年   8204篇
  2003年   7702篇
  2002年   7335篇
  2001年   6654篇
  2000年   6803篇
  1999年   6579篇
  1998年   6381篇
  1997年   6234篇
  1996年   5694篇
  1995年   5354篇
  1994年   4935篇
  1993年   4557篇
  1992年   4211篇
  1991年   4021篇
  1990年   4048篇
  1989年   3825篇
  1988年   3560篇
  1987年   4020篇
  1986年   3543篇
  1985年   4321篇
  1984年   4806篇
  1983年   4460篇
  1982年   4374篇
  1981年   3958篇
  1980年   3676篇
  1979年   3530篇
  1978年   3482篇
  1977年   3283篇
  1976年   3042篇
  1975年   2956篇
  1974年   2913篇
  1973年   3070篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
The interaction of free convection with thermal radiation of the oscillatory flow past a vertical plate is studied. The Rosseland approximation is used to describe the radiative heat flux in the energy equation.  相似文献   
32.
Shelf-mounted Ocean Thermal Energy Conversion (OTEC) plants require installation of cold-water pipes (CWP) on slopes of40degto depths of 1000 m. In addition, tower platforms containing OTEC power systems may be located on lesser sloped terrain near shore and exposed to special environmental loading problems affecting foundation design. Shelf-mounted installations require careful attention to site selection and geotechnical considerations for foundation integrity on sloped surfaces. This paper primarily discusses research associated with cold-water pipe and foundation installations on steep slopes, although research continues on tower platforms located on the shelf. At least five nations are in various stages of development of OTEC systems for island applications. Each of their systems is either shelf mounted or land based and requires that a large diameter cold-water pipe be installed on a steep slope to provide cold water from 1000-m depths. In addition to the installation and deployment of the large cold-water pipe, the most significant problem is the design and installation of suitable foundations that will last for several decades. To date there is very little experience in the offshore industry for large installations on steep slopes. A major scale-model research project is underway on the slopes of the island of Hawaii. A section of pipe 2.4 m in diameter and 24 m long was installed using combination concrete foundations and joints. The pipe and foundations are fully instrumented to measure environmental loading forces due principally to currents and waves. Environmental measurements will also be taken in the test area. The measurement data will be used to validate available analytical models for subsequent use in aiding industry in providing more cost-effective designs for OTEC pipes and foundations.  相似文献   
33.
A numerical scheme is developed in order to simulate fluid flow in three dimensional (3‐D) microstructures. The governing equations for steady incompressible flow are solved using the semi‐implicit method for pressure‐linked equations (SIMPLE) finite difference scheme within a non‐staggered grid system that represents the 3‐D microstructure. This system allows solving the governing equations using only one computational cell. The numerical scheme is verified through simulating fluid flow in idealized 3‐D microstructures with known closed form solutions for permeability. The numerical factors affecting the solution in terms of convergence and accuracy are also discussed. These factors include the resolution of the analysed microstructure and the truncation criterion. Fluid flow in 2‐D X‐ray computed tomography (CT) images of real porous media microstructure is also simulated using this numerical model. These real microstructures include field cores of asphalt mixes, laboratory linear kneading compactor (LKC) specimens, and laboratory Superpave gyratory compactor (SGC) specimens. The numerical results for the permeability of the real microstructures are compared with the results from closed form solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
34.
35.
The results of a general theoretical investigation of three commonly used types of inductive conductivity sensors, i.e., the single transformer, the double transformer, and the double transformer with an additional loop, are presented. The resulting formulas describe the dependence of the sensor output signal not only on the conductivity of the seawater but also on the parameters of the electrical circuit, among them the permeability of the transformer core(s), which-unlike the other parameters-shifts considerably during oceanographic in situ measurements. A mathematical discussion of these formulas shows that for certain circuit configurations, the sensor output is independent of changes in permeability. Most of these configurations form the basis of existing oceanographical conductivity sensors, among them the "classical" sensors developed by H. Hinkelmann [3], [4], and by N. L. Brown [14], while some others make evident further possibilities for eliminating the unwanted effects of shifting permeability. In the era of microelectronics, the latter might lead to a reassessment, especially of the single transformer-type sensor.  相似文献   
36.
Transverse secondary circulations involving surface convergence, observed in a well-mixed estuary in North Wales, are made visible by the collection of surface material along an axial line which extends continuously for many kilometres through the estuary. The circulation and axial convergence, however, are seen only during the flood phase of the tide and no similar behaviour has been observed during the ebb phase.Convergent circulations in the estuary are associated with small but steady transverse density gradients in the cross-section, produced by non-uniform advection of the longitudinal gradient through the channel. A diagnostic model, using measured mean distributions of cross-sectional density, indicates surface transverse velocities (~0.1 ms?1) similar to those observed in the estuary. The model further predicts appreciable transverse divergent currents at a fractional depth of 0.75: a prediction which has been tested in the estuary using a vertical array of accurately resolving current direction indicators.  相似文献   
37.
38.
A formula for the thickness of a shear band formed in saturated soils under a simple shear or a combined stress state has been proposed. It is shown that the shear band thickness is dependent on the pore pressure properties of the material and the dilatancy rate, but is independent of the details of the combined stress state. This is in accordance with some separate experimental observations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
39.
A micropolar elastoplastic model for soils is formulated and a series of finite element analyses are employed to demonstrate the use of a micropolar continuum in overcoming the numerical difficulties encountered in application of finite element method in standard Cauchy–Boltzmann continuum. Three examples of failure analysis involving a deep excavation, shallow foundation, and a retaining wall are presented. In all these cases, it is observed that the length scale introduced in the polar continuum regularizes the incremental boundary value problem and allows the numerical simulation to be continued until a clear collapse mechanism is achieved. The issue of grain size effect is also discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
40.
A coupled continuum‐discrete hydromechanical model was employed to analyse the liquefaction of a saturated loose deposit of cohesionless particles when subjected to a dynamic base excitation. The pore fluid flow was idealized using averaged Navier–Stokes equations and the discrete element method was employed to model the solid phase particles. A well established semi‐empirical relationship was utilized to quantify the fluid–particle interactions. The conducted simulations revealed a number of salient micro‐mechanical mechanisms and response patterns associated with the deposit liquefaction. Space and time variation of porosity was a major factor which affected the coupled response of the solid and fluid phases. Pore fluid flow was within Darcy's regime. The predicted response exhibited macroscopic patterns consistent with experimental results and case histories of the liquefaction of granular soil deposits. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号