首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64208篇
  免费   958篇
  国内免费   866篇
测绘学   1996篇
大气科学   5058篇
地球物理   12828篇
地质学   22053篇
海洋学   5412篇
天文学   14834篇
综合类   222篇
自然地理   3629篇
  2021年   454篇
  2020年   509篇
  2019年   552篇
  2018年   1352篇
  2017年   1240篇
  2016年   1760篇
  2015年   1123篇
  2014年   1690篇
  2013年   3335篇
  2012年   1892篇
  2011年   2506篇
  2010年   2111篇
  2009年   2889篇
  2008年   2547篇
  2007年   2450篇
  2006年   2349篇
  2005年   2059篇
  2004年   1920篇
  2003年   1875篇
  2002年   1788篇
  2001年   1601篇
  2000年   1582篇
  1999年   1458篇
  1998年   1328篇
  1997年   1353篇
  1996年   1207篇
  1995年   1077篇
  1994年   983篇
  1993年   885篇
  1992年   832篇
  1991年   826篇
  1990年   839篇
  1989年   749篇
  1988年   724篇
  1987年   819篇
  1986年   760篇
  1985年   901篇
  1984年   994篇
  1983年   960篇
  1982年   908篇
  1981年   779篇
  1980年   759篇
  1979年   681篇
  1978年   685篇
  1977年   624篇
  1976年   562篇
  1975年   565篇
  1974年   580篇
  1973年   609篇
  1972年   383篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
31.
 Sea-level rise is an important aspect of climate change because of its impact on society and ecosystems. Here we present an intercomparison of results from ten coupled atmosphere-ocean general circulation models (AOGCMs) for sea-level changes simulated for the twentieth century and projected to occur during the twenty first century in experiments following scenario IS92a for greenhouse gases and sulphate aerosols. The model results suggest that the rate of sea-level rise due to thermal expansion of sea water has increased during the twentieth century, but the small set of tide gauges with long records might not be adequate to detect this acceleration. The rate of sea-level rise due to thermal expansion continues to increase throughout the twenty first century, and the projected total is consequently larger than in the twentieth century; for 1990–2090 it amounts to 0.20–0.37 m. This wide range results from systematic uncertainty in modelling of climate change and of heat uptake by the ocean. The AOGCMs agree that sea-level rise is expected to be geographically non-uniform, with some regions experiencing as much as twice the global average, and others practically zero, but they do not agree about the geographical pattern. The lack of agreement indicates that we cannot currently have confidence in projections of local sea-level changes, and reveals a need for detailed analysis and intercomparison in order to understand and reduce the disagreements. Received: 1 September 2000 / Accepted: 20 April 2001  相似文献   
32.
33.
This paper presents a method that incorporates a non‐associated flow rule into the limit analysis to investigate the influence of the dilatancy angle on the factor of safety for the slope stability analysis. The proposed method retain's the advantage of the upper bound method, which is simple and has no stress involvement in the calculation of the energy dissipation and the factor of safety. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
34.
Why Mt Etna?     
The Etna volcano is located in an apparently anomalous position on the hinge zone of the Apennines subduction and its Na-alkaline geochemistry does not favour a magma source from the deep slab as indicated for the Aeolian K-alkaline magmatism. The steeper dip of the regional foreland monocline at the front of the Apennines in the Ionian Sea than in Sicily, implies a larger rollback of the subduction hinge in the Ionian Sea. Moreover, the lengthening of the Apennines arc needs extension parallel to the arc. Therefore, the larger southeastward subduction rollback of the Ionian lithosphere with respect to the Hyblean plateau in Sicily, should kinematically produce right-lateral transtension and a sort of vertical 'slab window' which might explain (i) the Plio-Pleistocene alkaline magmatism of eastern Sicily (e.g. the Etna volcano) and (ii) the late Pliocene to present right lateral transtensional tectonics and seismicity of eastern Sicily. The area of transfer of different dip and rollback occurs along the inherited Mesozoic passive continental margin between Sicily and the oceanic Ionian Sea, i.e. the Malta escarpment.  相似文献   
35.
We have investigated grain boundary diffusion rates in enstatite by heating single crystals of quartz packed in powdered San Carlos olivine (Mg0.90Fe0.10)2SiO4 at controlled oxygen fugacities in the range 10?5.7 to 10?8.7?atm and temperatures from 1350° to 1450?°C for times from 5 to 100?h at 1?atm total pressure. Following the experiments, the thickness of the coherent polycrystalline reaction rim of pyroxene that had formed between the quartz and olivine was measured using backscatter scanning imaging in the electron microprobe. Quantitative microprobe analysis indicated that the composition of this reaction phase is (Mg0.92Fe0.08)2Si2O6. The rate of growth of the pyroxene increases with increasing temperature, is independent of the oxygen fugacity, and is consistent with a parabolic rate law, indicating that the growth rate is controlled by ionic diffusion through the pyroxene rim. Microstructural observations and platinum marker experiments suggest that the reaction phase is formed at the olivine-pyroxene interface, and is therefore controlled by the diffusion of silicon and oxygen. The parabolic rate constants determined from the experiments were analyzed in terms of the oxide activity gradient across the rim to yield mean effective diffusivities for the rate-limiting ionic species, assuming bulk transport through the pyroxene layer. These effective diffusivities are faster than the lattice diffusivities for the slowest species (silicon) calculated from creep experiments, but slower than measured lattice diffusivities for oxygen in enstatite. Thus, silicon grain boundary diffusion is most likely to be the rate-limiting process in the growth of the pyroxene rims. Also, as oxygen transport through the pyroxene rims must be faster than silicon transport, diffusion of oxygen along the grain boundaries must be faster than through the lattice. The grain boundary diffusivity for silicon in orthopyroxenite is then given by D¯gbSiδ=(3.3±3.0)×10?9f0.0O2e?400±65/RT?m3s?1, where the activation energy for diffusion is in kJ/mol, and δ is the grain boundary width in m. Calculated growth rates for enstatite under these conditions are significantly slower than predicted by an extrapolation from similar experiments performed at 1000?°C under high pressure (hydrous) conditions by Yund and Tullis (1992), perhaps due to water-enhancement of diffusion in their experiments.  相似文献   
36.
 Swath bathymetric, gravity, and magnetic studies were carried out over a 55 km long segment of the Central Indian Ridge. The ridge is characterized by 12 to 15 km wide rift valley bounded by steep walls and prominent volcanic constructional ridges on either side of the central rift valley. A transform fault at 7°45′S displaces the ridge axis. A mantle Bouguer anomaly low of −14 mGals and shallowing of rift valley over the middle of the ridge segment indicate along axis crustal thickness variations. A poorly developed neovolcanic zone on the inner rift valley floor indicate dominance of tectonic extension. The off-axis volcanic ridgs suggest enhanced magmatic activity during the recent past. Received: 24 May 1996 / Rivision received: 13 January 1997  相似文献   
37.
We present special generating plane orbits, the vertical-critical orbits, of the coplanar general three-body problem. These are determined numerically for various values of m3, for the entire range of the mass ratio of the two primaries. The vertical-critical orbits are necessary in order to specify the vertically stable segments of the families of plane periodic orbits, and they are also the starting points of the families of the simplest possible three-dimensional periodic orbits, namely the simple and double periodic. The initial conditions of the vertical-critical periodic orbits of the basic families l, m, i, h, b and c and their stability parameters are determined. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
38.
The Waterman Metamorphic Complex of the central Mojave Desert was exposed as a consequence of early Miocene detachment-dominated extension. However, it has evidence consistent with a more extensive geological history that involves collision of a crustal fragment(s), tectonic thickening by overthrusting and two periods of extension. The metamorphic complex contains granitoid intrusives and felsic mylonitic gneisses as well as polymetamorphic rocks that include marble, calc-silicate, quartzite. mafic granulite, pyribolite, amphibolite, migmatite and biotite schist. The latter group of rocks was affected by an initial series of high-grade metamorphic events (M1 and M2) and a localized lower grade overprint (M3). The initial metamorphism (M1) can be separated into two stages along its high-grade P–T path: M1a, a granulite facies metamorphism at 800–850° C and 7.5–9 kbar and Mlb, an upper amphibolite facies overprint at 750–800° C and 10–12 kbar. M1a developed mineral assemblages and textures consistent with granulite facies conditions at a reduced activity of H2O and is associated with intense ductile deformation (D1) and minor local partial melting. M1b overprinted the granulite assemblages with a series of hydrous phases under conditions of increasing pressure and H2O activity and is accompanied by little or no deformation. M2 developed at lower pressures and temperatures (650–750° C, 4.5–5.5 kbar) and is distinguished by a second local overprint of hydrous phases that reflects an input of aqueous fluids probably associated with the intrusion of a series of granitic dykes and veins. Effects of M3 are confined to the Mitchel detachment zone, an anastomosing early Miocene detachment fault, and are characterized by local ductile/brittle deformation (D2) of the pre-existing high-grade rocks and granitoid intrusives and by the production of mylonites and mylonitic gneisses under greenschist facies conditions (300–350° C, 3–5 kbar). The initial overprint (M1a) represents metamorphism, devolatilization and minor partial melting of supracrustal rocks under granulite facies conditions as a consequence of tectonic and, possibly, magmatic thickening. The increasing pressure transition of M1a to M1b reflects a period of continued compressional tectonism, thrusting and influx of H2O, in part, locally related to crystallization of partial melts. The near isothermal decompression between M1b and M2 probably represents a pre-112-Ma extensional episode that may have been the result of a decompressional readjustment of a thickened crust. Following the initial extensional event, the metamorphic complex remained at depths of 10–17 km for at least 90 Ma until it was uplifted following Miocene extension. M3 develops locally in response to this second extensional period resulting from the early Miocene detachment faulting.  相似文献   
39.
Theoretical studies have shown the possibility of high-temperature ('high enthalpy') geothermal reservoirs in the pre-Tertiary rocks at 4–5 km depth range within the Pannonian Basin. This expectation was proven by the hotwater/steam blowout of Fábiánsebestyén-4 borehole (16.12.85–31.1.86). Exploration efforts carried out during 1987–88 in the broad vicinity of the borehole proved that reservoirs of this type can be found with the combination of seismic reflection, silica-thermometry and magnetotelluric sounding methods. Deliberate prospection should be continued in all suitable areas within the basin, since high enthalpy reservoirs promise profitable operation of geothermal power stations.  相似文献   
40.
The Cumberland Basin, a 118 km2 estuary at the head of the Bay of Fundy which has an average tidal range of about 11m, contains large tracts of salt marsh (15% of the area below highest high water). Low marsh (below about 0·9 m above mean high water) is composed almost exclusively of Spartina alterniflora while the vegetation on high marsh is more diverse but dominated by Spartina patens. Because of its higher elevation, high marsh is flooded infrequently for short periods by only extreme high tides. Low marsh is inundated much more frequently by water as much as 4m deep for periods as long as 4 h per tide. Temporal variability in the occurrence of extreme tides influences the flooding frequency of high marsh for any given month and year. Using a modification of Smalley's method, the mean annual net aerial primary production (NAPP) of low and high marsh is estimated to be 272 and 172 g C m?2, respectively. Vegetation turnover times average 1·0 and 2·0 y for low and high marsh, respectively. Because of abundant tidal energy, much of the low marsh production appears to be exported and distributed widely about the estuary. Since high levels of turbidity suppress phytoplankton production, salt marshes produce approximately half of the carbon fixed photosynthetically in the Cumberland Basin. It is concluded that salt marshes play a major ecological role in the Cumberland Basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号