首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266711篇
  免费   5022篇
  国内免费   3431篇
测绘学   7036篇
大气科学   19624篇
地球物理   55775篇
地质学   93598篇
海洋学   22327篇
天文学   57572篇
综合类   1049篇
自然地理   18183篇
  2021年   2264篇
  2020年   2606篇
  2019年   2867篇
  2018年   4562篇
  2017年   4280篇
  2016年   6263篇
  2015年   4236篇
  2014年   6920篇
  2013年   14214篇
  2012年   6928篇
  2011年   8794篇
  2010年   7847篇
  2009年   10397篇
  2008年   9101篇
  2007年   8770篇
  2006年   9738篇
  2005年   7953篇
  2004年   7833篇
  2003年   7338篇
  2002年   6869篇
  2001年   6056篇
  2000年   5985篇
  1999年   5226篇
  1998年   5248篇
  1997年   5048篇
  1996年   4690篇
  1995年   4445篇
  1994年   4111篇
  1993年   3863篇
  1992年   3650篇
  1991年   3593篇
  1990年   3771篇
  1989年   3526篇
  1988年   3308篇
  1987年   3852篇
  1986年   3410篇
  1985年   4225篇
  1984年   4745篇
  1983年   4416篇
  1982年   4314篇
  1981年   3934篇
  1980年   3638篇
  1979年   3510篇
  1978年   3492篇
  1977年   3286篇
  1976年   3045篇
  1975年   2965篇
  1974年   2918篇
  1973年   3082篇
  1972年   2027篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
791.
Makarov  V.I.  Filippov  B.P. 《Solar physics》2003,214(1):55-63
We have studied the variations of the height of polar crown prominences according to daily observations of the Sun at the Kodaikanal Observatory (India) during 1905–1975. Polar ring filaments at latitudes 60°–80° are related to the polar magnetic field reversal. A double decrease of the height of polar ring filaments was found in the course of their migration from 40°to the poles. We estimated the limiting height of the equilibrium of polar ring filaments from the stability condition of a strong electric current. We found that the transition from large-scale to small-scale ring filaments reduces the critical height of the stability for the prominences. A model of an inverse-polarity filament was used.  相似文献   
792.
Heating occurs in Titan's stratosphere from the absorption of incident solar radiation by methane and aerosols. About 10% of the incident sunlight reaches Titan's surface and causes heating there. Thermal radiation redistributes heat within the atmosphere and cools to space. The resulting vertical temperature profile is stable against convection and a state of radiative equilibrium is established. Equating theoretical and observed temperature profiles enables an empirical determination of the vertical distribution of thermal opacity. A uniformly mixed aerosol is responsible for most of the opacity in the stratosphere, whereas collision-induced absorption of gases is the main contributor in the troposphere. Occasional clouds are observed in the troposphere in spite of the large degrees of methane supersaturation found there. Photochemistry converts CH4 and N2 into more complex hydrocarbons and nitriles in the stratosphere and above. Thin ice clouds of trace organics are formed in the winter and early spring polar regions of the lower stratosphere. Precipitating ice particles serve as condensation sites for supersaturated methane vapor in the troposphere below, resulting in lowered methane degrees of supersaturation in the polar regions. Latitudinal variations of stratospheric temperature are seasonal, and lag instantaneous response to solar irradiation by about one season for two reasons: (1) an actual instantaneous thermal response to a latitudinal distribution of absorbing gases, themselves out of phase with the sun by about one season, and (2) a sluggish dynamical response of the stratosphere to the latitudinal transport of angular momentum, induced by radiative heating and cooling. Mean vertical abundances of stratospheric organics and aerosols are determined primarily by atmospheric chemistry and condensation, whereas latitudinal distributions are more influenced by meridional circulations. In addition to preferential scavenging by precipitating ice particles from above, the polar depletion of supersaturated methane results from periodic scavenging by short-lived tropospheric clouds, coupled with the steady poleward march of the continuously drying atmosphere due to meridional transport.  相似文献   
793.
794.
795.
796.
797.
Mantle peridotites were early exposed at the sea-floor of the Jurassic Tethys derived from the subcontinental mantle of the Europe-Adria system. During continental rifting and oceanic spreading, these lithospheric peri-dotites were percolated via diffuse reactive porous flowby melt fractions produced by near-fractional melting of the upwelling asthenosphere. Ascending melts inter-acted with the lower lithosphere, dissolving pyroxenes and precipitating olivine, and crystallized at shallower levels in the mantle column causing melt impregnation.Subsequent focused porous flow formed replacive dunitechannels, cutting the impregnated oeridotites, which were conduits for upward migration of MORB-type liq-uids. Melt migration produced depletionlrefertilization and significant heating of the percolatedlimpregnated mantle, i.e the thermochemical erosion of the litho-sphere. Impregnated and thermally modified lithos-pheric mantle was cooled by conductive heat loss dur-ing progressive lithosphere thinning and was intrudeaby MORB magmas, which formed Mg-rich and Fe-richgabbroic dykes and bodies. Alpine-Apennine ophiolitic peridotites record the deep-seated migration of melts which changed their compositions and dynamics during the rift evolution. The thermochemical erosion of the lithospheric mantle by the ascending asthenospheric melts, which induces significant compositional and rhe-ological changes in the lower lithosphere, is a major process in the evolution of the continent-ocean transi-tion towards a slow spreading oceanic system.  相似文献   
798.
799.
800.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号