首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110082篇
  免费   3349篇
  国内免费   3139篇
测绘学   3262篇
大气科学   10113篇
地球物理   22859篇
地质学   37816篇
海洋学   9817篇
天文学   23412篇
综合类   1238篇
自然地理   8053篇
  2021年   1038篇
  2020年   1096篇
  2019年   1201篇
  2018年   2007篇
  2017年   1994篇
  2016年   2697篇
  2015年   1941篇
  2014年   2852篇
  2013年   5497篇
  2012年   2812篇
  2011年   3831篇
  2010年   3554篇
  2009年   4676篇
  2008年   4267篇
  2007年   4005篇
  2006年   3845篇
  2005年   3484篇
  2004年   3411篇
  2003年   3213篇
  2002年   3077篇
  2001年   2844篇
  2000年   2777篇
  1999年   2757篇
  1998年   2649篇
  1997年   2568篇
  1996年   2280篇
  1995年   2134篇
  1994年   1944篇
  1993年   1798篇
  1992年   1683篇
  1991年   1509篇
  1990年   1667篇
  1989年   1475篇
  1988年   1351篇
  1987年   1535篇
  1986年   1315篇
  1985年   1646篇
  1984年   1907篇
  1983年   1759篇
  1982年   1682篇
  1981年   1594篇
  1980年   1363篇
  1979年   1351篇
  1978年   1339篇
  1977年   1244篇
  1976年   1168篇
  1975年   1070篇
  1974年   1116篇
  1973年   1144篇
  1972年   711篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
61.
New aeromagnetic data, K-Ar age determinations of dredged marine igneous rocks, as well as other geophysical evidence have shed light on the chronology, nature and evolution of the northern Iceland Plateau. Correspondence between seismic refraction profiles taken on the Jan Mayen Ridge and westward through Jan Mayen Island, suppressed aeromagnetic anomalies, earthquake surface wave studies, and ages of dredged igneous rocks suggest these strata may form an extended region of thickened crust, possibly of Caledonian age, extending westward toward the Kolbeinsey Ridge and northwest to the south wall of the Jan Mayen Fracture Zone.  相似文献   
62.
63.
64.
This paper is aimed towards investigating the filtration law of an incompressible viscous Newtonian fluid through a rigid non-inertial porous medium (e.g. a porous medium placed in a centrifuge basket). The filtration law is obtained by upscaling the flow equations at the pore scale. The upscaling technique is the homogenization method of multiple scale expansions which rigorously gives the macroscopic behaviour and the effective properties without any prerequisite on the form of the macroscopic equations. The derived filtration law is similar to Darcy's law, but the tensor of permeability presents the following remarkable properties: it depends upon the angular velocity of the porous matrix, it verifies Hall–Onsager's relationship and it is a non-symmetric tensor. We thus deduce that, under rotation, an isotropic porous medium leads to a non-isotropic effective permeability. In this paper, we present the results of numerical simulations of the flow through rotating porous media. This allows us to highlight the deviations of the flow due to Coriolis effects at both the microscopic scale (i.e. the pore scale), and the macroscopic scale (i.e. the sample scale). The above results confirm that for an isotropic medium, phenomenological laws already proposed in the literature fails at reproducing three-dimensional Coriolis effects in all types of pores geometry. We show that Coriolis effects may lead to significant variations of the permeability measured during centrifuge tests when the inverse Ekman number Ek−1 is 𝒪(1). These variations are estimated to be less than 5% if Ek−1<0.2, which is the case of classical geotechnical centrifuge tests. We finally conclude by showing that available experimental data from tests carried out in centrifuges are not sufficient to determining the effective tensor of permeability of rotating porous media. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
65.
The structure of beam noise measured at the output of a vertical array in a range dependent ocean basin was investigated using the modified wide-angle parabolic equation (PE). Noise sources were distributed throughout the basin, and the field due to each noise source at an array located in the midbasin was calculated. The response of the array to the superposition of the noise sources was found by beamforming. An efficient and direct approach that superimposes the noise sources on the PE field as the field is marched toward the array was developed. Downslope calculations of the midbasin vertical directionality were made between 50 and 400 Hz with this technique. Use of a geoacoustic model shows that the bottom behaves as a low-pass filter  相似文献   
66.
A four-year record from an inverted echo sounder deployed near Palmyra Island at 6°N in the central Pacific Ocean is compared with a simultaneous record of subsurface pressure from this island lagoon. A factor m, converting round-trip acoustic travel time to surface dynamic height relative to a deep pressure level, was estimated from the ratio of the spectra of the two records in the energetic synoptic oscillation band. Year-to-year variation in m was not statistically significant. For the overall record, m was found to be -70±8 dynamic m/s, where the error bounds represent a 90% confidence interval. This is consistent with first-baroclinic-mode excitation  相似文献   
67.
This paper considers the problem of estimatingm, the number of components in a finite mixture of distributions from a parametric family. A step-up procedure using the bootstrap method is proposed. Some properties of the procedure are illustrated with simulation studies. An example of the method, applied to orientation of beach clasts, is given.  相似文献   
68.
This paper presents a three-dimensional analytic linear wave solution for surface gravity wave propagation over a sloping bottom that is valid for small, but realistic, slopes. The sloping-bottom linear model is compared to published laboratory data and to predictions of two-dimensional, constant-bottom nonlinear theories. The model is shown to describe the measured wave-height growth in the wave transformation region up to a limiting local Ursell number Ur of 0.35-1.0, depending on the wave type, although, as a linear model, it does not predict the harmonics observed in that range. For Ur<0.35, the harmonics can generally be neglected and the sloping-bottom linear theory agrees closely with both the published wave-height data and third-order Stokes nonlinear theory. As a three-dimensional linear model, superposition can be invoked to synthesize and relate wave structure in the transformation region to complex incident ocean spectra with both wind wave and swell components that arrive with a range of incidence angles. As such, the sloping-bottom linear model presented here should be a convenient useful tool for ocean modeling through a significant portion of the wave transformation region  相似文献   
69.
Measured time series were generated by small omnidirectional explosive sources in a shallow water area. A bottom-mounted hydrophone recorded sound signals that propagated over a sloping bottom. The time series in the 250-500 Hz band were analyzed with a broad-band adiabatic normal mode approach. The measured waveforms contain numerous bottom interacting multipaths that are complicated by the subbottom structure that contains high-velocity layers near the water-sediment interface. Several of the details of the geoacoustic structure and the depth of the water column at the receiver are inferred from comparisons of the measured data to simulated time series. The sensitivity of broad-band matched-field ambiguity surfaces in the range-depth plane for a single receiver to selected waveguide parameters is examined. A consistent analysis is made where the simulated time series are compared to the measured time series along with the single-receiver matched-field localization solutions for ranges out to 5 km. In this range interval, it was found that the peak cross-correlation between the measured and simulated time series varied between 0.84 and 0.69. The difference between the GPS range and the range obtained from the matched-field solution varied from 0 to 63 m. The geoacoustic structure obtained in the analysis consists of an 8-m low-velocity sediment layer over an 8-m high-velocity layer followed by a higher velocity, infinite half-space  相似文献   
70.
White mica from the Liassic black shales and slates in Central Switzerland was analysed by transmission electron microscopy (TEM) and electron microprobe to determine its textural and compositional evolution during very low-grade prograde metamorphism. Samples were studied from the diagenetic zone, anchizone and epizone (T ≈100°–450 °C). Phyllosilicate minerals analysed include illite/smectite (I/S), phengite, muscovite, brammallite, paragonite, margarite and glauconite. Textural evolution primarily is towards larger, more defect-free grains with compositions that approach those of their respective end-members. The smectite-to-illite transformation reduced the amounts of the exchange components SiK?1Al?1, MgSiAl?2, and Fe3+Al?1. These trends continue to a lesser degree in the anchizone and epizone. Correlations between the proportion of smectite in I/S and the composition of I/S indicate that smectite layers may contain a high layer charge. Illite in I/S bears a compositional resemblance to macrocrystalline phengite in some samples, but is different in others. Paragonite first appears in the upper diagenetic zone or lower anchizone as an interlayer-deficient brammallite, and it may be mixed with muscovite on the nanometre scale. Owing to the small calculated structure factor for paragonite-muscovite superstructures, conventional X-ray powder diffraction cannot distinguish between mixed-layer structures and a homogeneous compositionally intermediate solid solutions. However, indirect TEM evidence shows that irregularly shaped domains of Na- and K-rich mica exist below 10 nm. Subsequent coarsening of domains at higher grades produced discrete paragonite grains at the margins of muscovite crystals or in laths parallel to the basal plane of the host muscovite. Margarite appears in the epizone and follows a textural evolution similar to paragonite in that mixtures of margarite, paragonite, and muscovite may initially occur on the nanometre scale. However, no evidence of interlayer-poor margarite has been found.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号