共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper describes the simulation and real data analysis results from the recently launched SAR satellites, ALOS-2, Sentinel-1 and Radarsat-2 for the purpose of monitoring subsidence induced by longwall mining activity using satellite synthetic aperture radar interferometry (InSAR). Because of the enhancement of orbit control (pairs with shorter perpendicular baseline) from the new satellite SAR systems, the mine subsidence detection is now mainly constrained by the phase discontinuities due to large deformation and temporal decorrelation noise.This paper investigates the performance of the three satellite missions with different imaging modes for mapping longwall mine subsidence. The results show that the three satellites perform better than their predecessors. The simulation results show that the Sentinel-1A/B constellation is capable of mapping rapid mine subsidence, especially the Sentinel-1A/B constellation with stripmap (SM) mode. Unfortunately, the Sentinel-1A/B SM data are not available in most cases and hence real data analysis cannot be conducted in this study. Despite the Sentinel-1A/B SM data, the simulation and real data analysis suggest that ALOS-2 is best suited for mapping mine subsidence amongst the three missions. Although not investigated in this study, the X-band satellites TerraSAR-X and COSMO-SkyMed with short temporal baseline and high spatial resolution can be comparable with the performance of the Radarsat-2 and Sentinel-1 C-band data over the dry surface with sparse vegetation.The potential of the recently launched satellites (e.g. ALOS-2 and Sentinel-1A/B) for mapping longwall mine subsidence is expected to be better than the results of this study, if the data acquired from the ideal acquisition modes are available. 相似文献
2.
The L-band synthetic aperture radar (SAR) interferometry (InSAR) technique has a lower accuracy due to ionospheric phase distortions. Recently, a multiple-aperture interferometry (MAI)-based ionospheric correction method has been proposed. Using four types of ionosphere-distorted interferograms, the performance of the correction method was evaluated and then analyzed the feasibility of the correction method. The test interferograms contained severe azimuth streaking, low-frequency ionospheric phase distortion and drastic phase change due to the ionosphere. The results showed that (i) the existence and magnitude of ionospheric phase distortions can be recognized from MAI interferograms and (ii) the MAI-based ionospheric correction method efficiently reduced severe azimuth streaking and low-frequency distortion but did not mitigate the drastic phase change perfectly. It is allowed (i) to determine whether a given SAR interferogram has an ionospheric distortion and (ii) to predict whether the ionospheric distortion can be corrected by using the MAI-based ionospheric correction method. 相似文献
3.
Batuhan Osmanoğlu Timothy H. Dixon Shimon Wdowinski Enrique Cabral-Cano Yan Jiang 《International Journal of Applied Earth Observation and Geoinformation》2011
We analyzed 23 satellite SAR (synthetic aperture radar) scenes using Persistent Scatter Interferometry (PSI) to study subsidence in Mexico City associated with groundwater withdrawal. The data were acquired by the Envisat ASAR system between January 2004 and July 2006. The spatial pattern of subsidence and the maximum subsidence rate (300 mm/year) are similar to earlier studies. Comparison to independent GPS data indicates RMS agreement between the two techniques of 6.9 mm/year, about the level expected based on joint data uncertainty. Significant annual variation in the GPS vertical data is not observed, suggesting minimal aquifer recharge during the rainy season, and justifying a simple linear model of phase variation through time for the PSI analysis. 相似文献
4.
Land subsidence in the Bandung basin, West Java, Indonesia, is characterized based on differential interferometric synthetic aperture radar (DInSAR) and interferometric point target analysis (IPTA). We generated interferograms from 21 ascending SAR images over the period 1 January 2007 to 3 March 2011. The estimated subsidence history shows that subsidence continuously increased reaching a cumulative 45 cm during this period, and the linear subsidence rate reached ∼12 cm/yr. This significant subsidence occurred in the industrial and densely populated residential regions of the Bandung basin where large amounts of groundwater are consumed. However, in several areas the subsidence patterns do not correlate with the distribution of groundwater production wells and mapped aquifer degradation. We conclude that groundwater production controls subsidence, but lithology is a counteracting factor for subsidence in the Bandung basin. Moreover, seasonal trends of nonlinear surface deformations are highly related with the variation of rainfall. They indicate that there is elastic expansion (rebound) of aquifer system response to seasonal-natural recharge during rainy season. 相似文献
5.
Land subsidence has been occurring in Beijing since the 1970s. Five major land subsidence areas have been formed: Dongbalizhuang–Dajiaoting, Laiguangying, Changping Shahe–Ba Xianzhuang, Daxing Yufa–Lixian, and Shunyi–Ping Gezhuang. In this paper, we studied on land subsidence in Dongbalizhuang–Dajiaoting and Laiguangying using small baseline subset interferometry and interferometric point target methods of 47 ENVISAT ASAR and 29 RADARSAT-2 data. The results showed that the degree of land subsidence in these areas varied significantly. The mean land subsidence rate ranged from 143.43 to 8.2 mm/a and from 132.11 to 7.3 mm/a during 2005–2010 and 2011–2013, respectively. We correlated the observed settlement with the land use (agricultural, residential, and industrial). Displacement in the agricultural areas was greater than that in the other areas from 2005 to 2013. Moreover, we compared the observed deformation and the groundwater level in phreatic and confined aquifers. There was a strong correlation between ground subsidence and the groundwater level and the ground settlement increased with a decrease in the groundwater level and the maximum correlation coefficient can reach 0.525. Furthermore, subsidence appeared to be associated with compressible deposits, suggesting that for 90–210-m thick compressible deposits, ground settlement is more likely to occur as the thickness of the compressible layer increases. 相似文献
6.
7.
在过去的几十年中,洛杉矶由于自然灾害、城市建设、地下水开采和石油开采等人为因素而发生了严重的地表变形.本文的目的是绘制洛杉矶地表形变速率分布图,并使用改进的小基线集(SBAS)技术和多传感器SAR数据集,分析该地区2003年10月至2017年10月的形变原因.同时,将SBAS反演的变形结果、GPS测量结果和多传感器SA... 相似文献
8.
大同盆地是汾渭盆地北端一个地面沉降较严重的区域,地下水开采是该区域地面沉降发生的一个重要原因。然而地下水活动与地面沉降在空间和时间的相关性却鲜有研究。为了掌握该地区地下水活动与地面沉降的内在联系,该文基于Envisat ASAR数据,利用短基线集(small baseline subset,SBAS)-In SAR技术对大同盆地地面沉降形变特征进行监测;同时利用地下水位监测数据,研究地面沉降中心与地下水位漏斗在空间和时间上的对应关系,定量分析2处地下水位波动与地表形变的关系。研究表明,地下水开采是大同盆地水源地地面沉降的主要原因,但并非所有的地下水位漏斗都存在地面沉降。该研究成果对指导该地区地下水开采及控制地面沉降有一定参考价值。 相似文献
9.
South-west of Tehran, the capital city of Iran, is subjected to a high deformation rate due to excessive groundwater extractions. Persistent Scatterrer SAR Interferometry (PS-InSAR) technique is used to monitor Tehran’s deformation. Three time series data including two Sentinel-1A (S-1A) spanning from 2014 to 2017, and an ENVISAT-ASAR data stack spanning from 2004 to 2010, are analyzed. The PS-InSAR technique does not perform well on ENVISAT-ASAR due to poor selection of PS points induced by large perpendicular baselines and strong temporal decorrelation of the dataset. In this paper, a novel Iterative PSI method (IPSI) is proposed to increase the PS points which are lost in PS-InSAR technique because of the unsuccessful derivation of the absolute phase value due to an integer ambiguity. The method selects PS points based on simultaneous analysis of their amplitude and phase. Results demonstrate that the density of PSs has been increased by about 4.5 times. Line of Sight (LOS) velocities obtained from both S-1A and ENVISAT-ASAR data analysis are highly compatible with each other, indicating the reliability of the both applied methods. The maximum cumulative displacements are estimated as 39.6 cm and 88.4 cm for Sentinel-1A and ENVISAT-ASAR datasets respectively. Moreover, the subsidence area has grown in the period between the data acquisition time. The methods are successfully validated by subsidence rates obtained from precise leveling and GPS observations. 相似文献
10.
11.
Persistent scatterer synthetic aperture radar interferometry (PSI) is a powerful remote sensing technique to detect and measure deformation of the Earth‘s crust – such as subsidence and landslides – with an accuracy of a few millimeters. Deformation is measured at specific points in a radar image called persistent scatterers (PS), which are characterized by long-term constant backscattering properties (high coherence) of the radar signal. Reliable PSI processing requires a stack of 15–50 SAR images and more, and processing is time-consuming (computational costs) and expensive (referring to both, costs for the SAR data and labor costs). Previous research for PS assessment used already acquired SAR data. This paper presents two new methods for predicting PS prior to the radar recording of the area of interest using freely available or low-cost land cover data, topographical maps and OpenStreetMap data. In the procedure, the distance between the assessed PS is calculated and classified regarding to the applicability for PSI processing. Additionally, the dispersion of the assessed PS within the site is analyzed. The results of the two assessment methods are validated using data of real PSI processing. Here, we show that the developed PS assessment techniques are fast and reliable tools to test the spatial applicability of PSI. 相似文献
12.
Ahmed Youssef 《地球空间信息科学学报》2013,16(3):182-190
In the current study, the shuttle radar topography mission (SRTM) data, with ~90 m horizontal resolution, were used to delineate the paleodrainage system and their mega basin extent in the East Sahara area. One mega-drainage basin has been detected, covering an area of 256 000 km2. It is classified into two sub mega basins. The Uweinate sub mega basin, which is composed of four main tributaries, collected water from a vast catchment region and drained eastward from the north, west, and southwest, starting at highland areas. The first subwatershed basin is in the northern plateau, south of the Abu-Balas area, with a total catchment area of 25 045 km2. The second subwatershed is in the Gilf Kebir plateau and has a total catchment area of 38 257 km2. The third subwatershed drains from the Uweinate highlands and has a catchment area of 46 154 km2. The fourth subwatershed, which is known in literature as Wadi Mokhtafi in its upper reach and Wadi Arid in its lower reach, drains the northwestern highlands of Sudan and has a total catchment area of 28 653 km2. The Tushka sub mega basin includes one watershed that drains from the northeast highlands of Sudan and has a total catchment area of 63 019 km2. The Uweinate and Tushka sub mega basins are joined together to the North of the Tushka depression, which drains northward toward the Kharga depression. This study indicates that the Eastern Sahara Mega Basin is a closed hydrological system independent of the other drainage systems, such as the Nile hydrosystem and the Qena Valley system. The present research illustrates the capability of the SRTM data in mapping the paleochannel networks, as well as estimate the catchment area and direction of the water flow. Finally, the study reveals that the four areas could be potentially used for different reclamation activities due to the ground water accumulations possibilities. 相似文献
13.
利用SRTM绘制东Sahara大型古排水盆地及其对南埃及新发展计划的影响(英文) 总被引:2,自引:0,他引:2
Ahmed Mohamed Youssef 《地球空间信息科学学报》2009,12(3):182-190
In the current study, the shuttle radar topography mission (SRTM) data, with~90 m horizontal resolution, were used to delineate the paleodrainage system and their mega basin extent in the East Sahara area. One mega-drainage basin has been detected, covering an area of 256 000 km2. It is classified into two sub mega basins. The Uweinate sub mega basin, which is composed of four main tributaries, collected water from a vast catchment region and drained eastward from the north, west, and southwest, starting at... 相似文献
14.
The aim of this study is to estimate the capabilities of forecasting the yield of wheat using an artificial neural network combined with multi-temporal satellite data acquired at high spatial resolution throughout the agricultural season in the optical and/or microwave domains. Reflectance (acquired by Formosat-2, and Spot 4–5 in the green, red, and near infrared wavelength) and multi-configuration backscattering coefficients (acquired by TerraSAR-X and Radarsat-2 in the X- and C-bands, at co- (abbreviated HH and VV) and cross-polarization states (abbreviated HV and VH)) constitute the input variable of the artificial neural networks, which are trained and validated on the successively acquired images, providing yield forecast in near real-time conditions. The study is based on data collected over 32 fields of wheat distributed over a study area located in southwestern France, near Toulouse. Among the tested sensor configurations, several satellite data appear useful for the yield forecasting throughout the agricultural season (showing coefficient of determination (R2) larger than 0.60 and a root mean square error (RMSE) lower than 9.1 quintals by hectare (q ha−1)): CVH, CHV, or the combined used of XHH and CHH, CHH and CHV, or green reflectance and CHH. Nevertheless, the best accurate forecast (R2 = 0.76 and RMSE = 7.0 q ha−1) is obtained longtime before the harvest (on day 98, during the elongation of stems) using the combination of co- and cross-polarized backscattering coefficients acquired in the C-band (CVV and CVH). These results highlight the high interest of using synthetic aperture radar (SAR) data instead of optical ones to early forecast the yield before the harvest of wheat. 相似文献
15.
The underground railway network of Beijing City, China, which is an important urban infrastructure, has burgeoned with the expansion of the city. However, the influence of subway construction and operation on local subsidence has received minimal attention. By analyzing the Radarsat-2 synthetic aperture radar satellite data, and using persistent scatterer interferometry, we revealed the land subsidence characteristics along the Beijing Subway Line 6. In the context of land subsidence, the expectation (Ex) reflects the overall level of local land subsidence while the entropy (En) reflects the degree of nonuniformity of local land subsidence in time and space. By comparing the changes in Ex and En, we estimated the spatial range of the influence of the subway on local land subsidence. The influenced area was mainly located between 60 m north of the subway line and 80 m south of the subway line. Land subsidence was most strongly altered during subway construction. During operation of the subway, the deformation rates along the subway increased slightly in the first two years and were then stabilized. 相似文献
16.
Fulong Chen Nicola Masini Jie Liu Jiangbin You Rosa Lasaponara 《International Journal of Digital Earth》2016,9(12):1224-1241
Synthetic Aperture Radar (SAR) remote sensing is increasingly favoured in archaeological applications. However, the effectiveness of this technology for archaeological prospection has so far not been fully assessed. In this study, an integrated single-date and multi-temporal SAR data-processing chain was proposed to sharpen archaeological signs and hence their detection and monitoring. In total, 14 scenes of X-band Cosmo-SkyMed, C-band Sentinel-1 and L-band PALSAR data covering the Western Regions of the Silk Road Corridor in China were employed for two important archaeological sites including the Yumen Frontier Pass with emerging archaeological traces and Niya ruins with subsurface remains. The results pointed out that single-date satellite radar data were useful for the identification of subsurface traces buried under desert in the landscape-scale, whereas for the identification of emerging monuments, Sentinel-1 was limited by its lower spatial resolution compared to TerraSAR and PALSAR data. Multi-date products, such as interferometric coherence, the averaged radar signatures and RGB multi-temporal composites, were effective to sharpen archaeological traces as well as for change detection in Yumen Frontier Pass. This study presents a pilot assessment of satellite SAR data for the analysis and monitoring of archaeological features in the predominantly arid-sandy environmental characteristic of investigated sites. 相似文献
17.
Yunqiao Shu Simon Stisen Karsten H. Jensen Inge Sandholt 《International Journal of Applied Earth Observation and Geoinformation》2011
Data from the first operational Chinese geostationary satellite Fengyun-2C (FY-2C) satellite are applied in combination with Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products for the assessment of regional evapotranspiration over the North China Plain. The approach is based on the improved triangle method, where the temperature–vegetation index space includes thermal inertia. Two thermal infrared channels from FY-2C are used to estimate surface temperature (Ts) based on a split window algorithm originally proposed for the MSG-SEVIRI sensor. Subsequently the high temporal resolution of FY-2C data is exploited to give the morning rise in Ts. Combined with the 16 days composite MODIS vegetation indices product (MOD13) at a spatial resolution of 5 km, evaporative fraction (EF) is estimated by interpolation in the ΔTs–NDVI triangular-shaped scatter space. Finally, regional actual evapotranspiration (ET) is derived from the evaporative fraction and available energy estimated from MODIS surface albedo products MCD43. Spatial variations of estimated surface variables (Ts, EF and ET) corresponded well to land cover patterns and farmland management practices. Estimated ET and EF also compared well to lysimeter data collected for the period June 2005–September 2007. The improved triangle method was also applied to MODIS products for comparison. Estimates based on FY-2C products proved to provide slightly better results than those based on MODIS products. The consistency of the estimated spatial variation with other spatial data supports the use of FY-2C data for ET estimation using the improved triangle method. Of particular value is the high temporal frequency of image acquisitions from FY-2C which improves the likelihood of obtaining cloud free image acquisitions as compared to polar orbiting sensors like MODIS. 相似文献
18.
Marjan Marbouti Oleg Antropov Jaan Praks Patrick B.Eriksson Vahid Arabzadeh Eero Rinne Matti Lepp?ranta 《地球空间信息科学学报》2021,24(2):313-332
In this study, we assess the potential of X-band Interferometric Synthetic Aperture Radar imagery for automated classification of sea ice over the Baltic Sea. A bistatic SAR scene acquired by the TanDEM-X mission over the Bothnian Bay in March of 2012 was used in the analysis. Backscatter intensity, interferometric coherence magnitude, and interferometric phase have been used as informative features in several classification experiments. Various combinations of classification features were evaluated using Maximum likelihood (ML), Random Forests (RF) and Support Vector Machine (SVM) classifiers to achieve the best possible discrimination between open water and several sea ice types (undeformed ice, ridged ice, moderately deformed ice, brash ice, thick level ice, and new ice). Adding interferometric phase and coherence-magnitude to backscatter-intensity resulted in improved overall classification per- formance compared to using only backscatter-intensity. The RF algorithm appeared to be slightly superior to SVM and ML due to higher overall accuracies, however, at the expense of somewhat longer processing time. The best overall accuracy (OA) for three methodologies were achieved using combination of all tested features were 71.56, 72.93, and 72.91% for ML, RF and SVM classifiers, respectively. Compared to OAs of 62.28, 66.51, and 63.05% using only backscatter intensity, this indicates strong benefit of SAR interferometry in discriminating different types of sea ice. In contrast to several earlier studies, we were particularly able to successfully discriminate open water and new ice classes. 相似文献
19.
Beijing has experienced rapid urbanization and associated urban heat island effects and air pollution. In this study, a contribution index was proposed to explore the effect of urbanization on land surface temperature (LST) using Moderate-Resolution Imaging Spectroradiometer (MODIS)-derived data with high temporal resolution. The analysis indicated that different zones and landscapes make diurnally and seasonally different contributions to the regional thermal environment. The differences in contributions by the three main functional zones resulted from differences in their landscape compositions. The roles of landscapes in this process varied diurnally and seasonally. Urban land was the most important contributor to increases in regional LSTs. The contributions of cropland and forest varied distinctly between daytime and nighttime owing to differences in their thermal inertias. Vegetation had a notable cooling effect as the normalized vegetation difference index (NDVI) increased during summer. However, when the NDVI reached a certain value, the nighttime LST shifted markedly in other seasons. The results suggest that urban design based on vegetation partitions would be effective for regulating the thermal environment. 相似文献
20.
This study developed an impervious surface fraction algorithm (ISFA) for automatic mapping of urban areas from Landsat data. We processed the data for 2001 and 2014 to trace the urbanization of Tegucigalpa, the capital city of Honduras, using a four-step procedure: (1) data pre-processing to perform image reflectance normalization, (2) quantification of impervious surface area (ISA) using ISFA, (3) accuracy assessment of mapping results and (4) change analysis of urban growth. The mapping results compared with the ground reference data confirmed the validity of ISFA for automatic delineation of ISA in the study region. The overall accuracy and Kappa coefficient achieved for 2001 were 92.8% and 0.86, while the values for 2014 were 91.8% and 0.84, respectively. The results of change detection between the classification maps indicated that ISA increased approximately 1956.7 ha from 2001 to 2014, mainly attributing to the increase of the city’s population. 相似文献