首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
At present, using Eddy Covariance (EC) method to estimate the "true value" of carbon sequestration in terrestrial ecosystem arrests more attention. However, one issue is how to solve the uncertainty of observations (especially the nighttime CO2 flux data) appearing in post-processing CO2 flux data. The ratio of effective and reliable nighttime EC CO2 flux data to all nighttime data is relatively low (commonly, less than 50%) for all the long-term and continuous observation stations in the world. Thus, the processing method of nighttime CO2 flux data and its effect analysis on estimating CO2 flux annual sums are very important. In this paper, the authors analyze and discuss the reasons for underestimating nighttime CO2 flux using EC method, and introduce the general theory and method for processing nighttime CO2 flux data. By analyzing the relationship between nighttime CO2 flux and air fraction velocity u., we present an alternate method, Average Values Test (AVT), to determine the thresholds of fraction velocity (u.c) for screening the effective nighttime CO2 flux data. Meanwhile, taking the data observed in Yucheng and Changbai Mountains stations for an example, we analyze and discuss the effects of different methods or parameters on nighttime CO2 flux estimations. Finally, based on the data of part ChinaFLUX stations and related literatures, empirical models of nighttime respiration at different sites in ChinaFLUX are summarized.  相似文献   

2.
The eddy covariance technique has emerged as an important tool to directly measure carbon dioxide, water vapor and heat fluxes between the terrestrial ecosystem and the atmosphere after a long history of fundamental research and technological developments. With the realization of regional networks of flux measurements in North American, European, Asia, Brazil, Australia and Africa, a global-scale network of micrometeorological flux measurement (FLUXNET) was established in 1998. FLUXNET has made great progresses in investigating the environmental mechanisms controlling carbon and water cycles, quantifying spatial-temporal patterns of carbon budget and seeking the “missing carbon sink” in global terrestrial ecosystems in the past ten years. The global-scale flux measurement also built a platform for international communication in the fields of resource, ecology and environment sciences. With the continuous development of flux research, FLUXNET will introduce and explore new techniques to extend the application fields of flux measurement and to answer questions in the fields of bio-geography, eco-hydrology, meteorology, climate change, remote sensing and modeling with eddy covariance flux data. As an important part of FLUXNET, ChinaFLUX has made significant progresses in the past three years on the methodology and technique of eddy covariance flux measurement, on the responses of CO2 and H2O exchange between the terrestrial ecosystem and the atmosphere to environmental change, and on flux modeling development. Results showed that the major forests on the North-South Transect of Eastern China (NSTEC) were all carbon sinks during 2003 to 2005, and the alpine meadows on the Tibet Plateau were also small carbon sinks. However, the reserved natural grassland, Leymus chinensis steppe in Inner Mongolia, was a carbon source. On a regional scale, temperature and precipitation are the primary climatic factors that determined the carbon balance in major terrestrial ecosystems in China. Finally, the current research emphasis and future directions of ChinaFLUX were presented. By combining flux network and terrestrial transect, ChinaFLUX will develop integrated research with multi-scale, multi-process, multi-subject observations, placing emphasis on the mechanism and coupling relationships between water, carbon and nitrogen cycles in terrestrial ecosystems.  相似文献   

3.
Energy balance closure at ChinaFLUX sites   总被引:1,自引:0,他引:1  
Network of eddy covariance observation is measuring long-term carbon and water fluxes in contrasting ecosystems and climates. As one important reference of independently evaluating scalar flux estimates from eddy covariance, energy balance closure is used widely in study of carbon and water fluxes. Energy balance closure in ChinaFLUX was evaluated by statistical regression of turbulent energy fluxes (sensible and latent heat) against available energy (net radiation, soil heat flux, canopy heat storage) and the energy balance ratio (EBR) and the frequency distribution of relative errors of energy balance (δ). The trends of diurnal and seasonal variation of energy balance in ChinaFLUX were analyzed. The results indicated that the imbalance was prevalent in all observation sites, but there were little differences among sites because of the properties variation of sites. The imbalance was greater during nocturnal periods than daytime and closure was improved with friction velocity intensifying. Generally the results suggested that estimates of the scalar turbulent fluxes of sensible and latent heat were underestimated and/or that available energy was overestimated. Finally, we discussed certain factors that are contributed to the imbalance of energy, such as systematic errors associated with the sampling mismatch, systematic instrument bias, neglected energy sinks, low and high frequency loss of turbulent fluxes and advection of heat and water vapor.  相似文献   

4.
The results of eddy covariance observation system could represent the physical process at certain area of the surface. Thus point-to-area representativeness was of primary interest in flux observation. This research presents a preliminary study for flux observation at ChinaFLUX sites by the use of observation data and Flux Source Area Model (FSAM). Results show that the footprint expands and is further away from flux tower when atmosphere becomes more stable, the observation height increases, or the surfaces become smoother. This suggests that the area represented by the flux observation becomes larger. The distances from the reference point to the maximum point Smax and the minimum point x1 of source weight function (Dmax and Dmin, respectively) can be influenced by atmosphere stability which becomes longer when atmosphere is more stable. For more rough surfaces and lower observation point Dmax and Dmin become shorter. This research gives the footprint at level P=90% at ChinaFLUX sites at different atmosphere stability. The preliminary results of spatial representiveness at ChinaFLUX sites were given based on the dominant wind direction and footprint response to various factors. The study also provides some theoretical basis for data quality control and evaluating data uncertainty.  相似文献   

5.
Advances in carbon flux observation and research in Asia   总被引:7,自引:0,他引:7  
As an important component of FLUXNET, Asia is increasingly becoming the hotspot in global carbon research for its vast territory, complex climate type and vegetation diversity. The present three regional flux observation networks in Asia (i.e. AsiaFlux, KoFlux and ChinaFLUX)have 54 flux observation sites altogether, covering tropic rainforest, evergreen broad-leaved forest, broad-leaved and coniferous mixed forest, shrubland, grassland, alpine meadow and cropland ecosystems with a latitudinal distribution from 2°N to 63°N. Long-term and continuous fluxes of carbon dioxide, water vapor and energy between the biosphere and atmosphere are mainly measured with eddy covariance technique to (1) quantify and compare the carbon, water and energy budgets across diverse ecosystems; (2) quantify the environmental and biotic controlling mechanism on ecosystem carbon, water and energy fluxes; (3) validate the soil-vegetation-atmosphere model; and (4) serve the integrated study of terrestrial ecosystem carbon and water cycle. Over the last decades, great advancements have been made in the theory and technology of flux measurement, ecosystem flux patterns, simulation and scale conversion by Asian flux community. The establishment of ChinaFLUX has greatly filled the gap of flux observation and research in Eurasia. To further promote the flux measurement and research,accelerate data sharing and improve the data quality, it is necessary to present a methodological system of flux estimation and evaluation over complex terrain and to develop the integrated research that combines the flux measurement, stable isotope measurement, remote sensing observation and GIS technique. It also requires the establishment of the Joint Committee of Asian Flux Network in the Asia-Pacific region in order to promote the cooperation and communication of ideas and data by supporting project scientists, workshops and visiting scientists.  相似文献   

6.
Although Eddy Covariance (EC) technique is one of the best methods for estimating the energy and mass exchanges between underlying surface and atmosphere in micrometeorology, errors and uncertainties still exist without necessary corrections. In this paper, we will focus on the effect of coordinate system on the eddy fluxes. Based on the data observed over four sites (one farmland site, one grassland site and two forest sites), the effects of three coordinate system transforming methods (Double Rotation-DR, Triple Rotation-TR and Planar Fit-PF)on the turbulent fluxes are analyzed. It shows that (i) the corrected fluxes are more or less than the uncorrected fluxes, which is related mainly to the sloping degree of surface, wind speed and wind direction; and (ii) pitch angle has a sinusoidal dependence on wind direction, especially in the regular sloping terrain; and (iii) PF method is something like the simplification of TR or DR,and there are not obvious distinctions in correction in sloping grassland and flat farmland, but PF method is not suitable for uneven and irregular forest sites.  相似文献   

7.
A process-based ecosystem productivity model BEPS (Boreal Ecosystem Productivity Simulator) was updated to simulate half-hourly exchanges of carbon, water and energy between the atmosphere and terrestrial ecosystem at a temperate broad-leaved Korean pine forest in the Changbai Mountains, China. The BEPSh model is able to capture the diurnal and seasonal variability in carbon dioxide, water vapor and heat fluxes at this site in the growing season of 2003. The model validation showed that the simulated net ecosystem productivity (NEP), latent heat flux (LE), sensible heat flux (Hs) are in good agreement with eddy covariance measurements with an R2 value of 0.68, 0.86 and 0.72 for NEP, LE and Hs, respectively. The simulated annual NEP of this forest in 2003 was 300.5 gC/m2, and was very close to the observed value. Driving this model with different climate scenarios, we found that the NEP in the Changbai Mountains temperate broad-leaved Korean pine mixed forest ecosystem was sensitive to climate variability, and the current carbon sink will be weakened under the condition of global warming. Furthermore, as a process-based model, BEPSh was also sensitive to physiological parameters of plant, such as maximum Rubisco activity (Vcmax) and the maximum stomatal conductance (gmax), and needs to be carefully calibrated for other applications.  相似文献   

8.
The long-term and continuous carbon fluxes of Changbaishan temperate mixed forest (CBS), Qianyanzhou subtropical evergreen coniferous forest (QYZ), Dinghushan subtropical evergreen mixed forest (DHS) and Xishuangbana tropical rainforest (XSBN) have been measured with eddy covariance techniques. In 2003, different responses of carbon exchange to the environment appeared across the four ecosystems. At CBS, the carbon exchange was mainly determined by radiation and temperature. 0℃and 10℃were two important temperature thresholds; the former determined the length of the growing season and the latter affected the magnitude of carbon exchange. The maximum net ecosystem exchange (NEE) of CBS occurred in early summer because maximum ecosystem photosynthesis (GPP) occurred earlier than maximum ecosystem respiration (Rθ). During summer, QYZ experienced severe drought and NEE decreased significantly mainly as a result of the depression of GPP. At DHS and XSBN, NEE was higher in the drought season than the wet season, especially the conversion between carbon sink and source occurring during the transition season at XSBN. During the wet season, increased fog and humid weather resulted from the plentiful rainfall, the ecosystem GPP was dispressed. The Q10 and annual respiration of XSBN were the highest among the four ecosystems, while the average daily respiration of CBS during the growing season was the highest. Annual NEE of CBS, QYZ, DHS and XSBN were 181.5, 360.9, 536.2 and -320.0 g·C·m-2·a-1, respectively. From CBS to DHS, the temperature and precipitation increased with the decrease in latitude. The ratio of WEE/Rθincreased with latitude, while Rθ/Gpp, ecosystem light use efficiency (LUE), precipitation use efficiency and average daily GPP decreased gradually. However, XSBN usually escaped such latitude trend probably because of the influence of the south-west monsoon climate which does not affect the other ecosystems. Long-term measurement and more research were necessary to understand the adaptation of forest ecosystems to climate change and to evaluate the ecosystem carbon balance due to the complexity of structure and function of forest ecosystems.  相似文献   

9.
The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0μmol-1·m-2·s-1) flux data during windy conditions (u* > 0.2 m·s-1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem CO2 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol-1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m-2·s-1. Indistinctive seasonal variation of o or Amax was consistent with weak seasonal dynamics of leaf area index (LAI) in such a lower subtropical evergreen mixed forest. (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m-2 mon-1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated NEE was estimated as -43.2±29.6 gC·m-2·mon-1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as -563.0 and -441.2 gC·m-2·a-1 respectively, accounting for about 32% of GPP.  相似文献   

10.
11.
The nonlinearity of the relationship between CO2 flux and other micrometeorological variables flux parameters limits the applicability of carbon flux models to accurately estimate the flux dynamics. However, the need for carbon dioxide (CO2) estimations covering larger areas and the limitations of the point eddy covariance technique to address this requirement necessitates the modeling of CO2 flux from other micrometeorological variables. Artificial neural networks (ANN) are used because of their power to fit highly nonlinear relations between input and output variables without explaining the nature of the phenomena. This paper applied a multilayer perception ANN technique with error back propagation algorithm to simulate CO2 flux on three different ecosystems (forest, grassland and cropland) in ChinaFLUX. Energy flux (net radiation, latent heat, sensible heat and soil heat flux) and temperature (air and soil) and soil moisture were used to train the ANN and predict the CO2 flux. Diurnal half-hourly fluxes data of observations from June to August in 2003 were divided into training, validating and testing. Results of the CO2 flux simulation show that the technique can successfully predict the observed values with R2 value between 0.75 and 0.866. It is also found that the soil moisture could not improve the simulative accuracy without water stress. The analysis of the contribution of input variables in ANN shows that the ANN is not a black box model, it can tell us about the controlling parameters of NEE in different ecosystems and micrometeorological environment. The results indicate the ANN is not only a reliable, efficient technique to estimate regional or global CO2 flux from point measurements and understand the spatiotemporal budget of the CO2 fluxes, but also can identify the relations between the CO2 flux and micrometeorological variables.  相似文献   

12.
CO2 flux was measured continuously in a wheat and maize rotation system of North China Plain using the eddy covariance technique to study the characteristic of CO2 exchange and its response to key environmental factors. The results show that nighttime net ecosystem exchange (NEE) varied exponentially with soil temperature. The temperature sensitivities of the ecosystem (Q10) were 2.94 and 2.49 in years 2002-2003 and 2003-2004, respectively. The response of gross primary productivity (GPP) to photosynthetically active radiation (PAR) in the crop field can be expressed by a rectangular hyperbolic function. Average Amax andαfor maize were more than those for wheat. The values ofαincreased positively with leaf area index (LAI) of wheat. Diurnal variations of NEE were significant from March to May and from July to September, but not remarkable in other months. NEE, GPP and ecosystem respiration (Rec) showed significantly seasonal variations in the crop field. The highest mean daily CO2 uptake rate was -10.20 and -12.50 gC·m-2·d-1 in 2003 and 2004, for the maize field, respectively, and -8.19 and -9.50 gC·m-2·d-1 in 2003 and 2004 for the wheat field, respectively. The maximal CO2 uptake appeared in April or May for wheat and mid-August for maize. During the main growing seasons of winter wheat and summer maize, NEE was controlled by GPP which was chiefly influenced by PAR and LAI. Rec reached its annual maximum in July when Rec and GPP contributed to NEE equally. NEE was dominated by Rec in other months and temperature became a key factor controlling NEE. Total NEE for the wheat field was -77.6 and -152.2 gC·m-2·a-1 in years 2002-2003 and 2003-2004, respectively, and -120.1 and -165.6 gC·m-2·a-1 in 2003 and 2004 for the maize field, respectively. The cropland of North China Plain was a carbon sink, with annual -197.6 and -317.9 gC·m-2·a-1 in years 2002-2003 and 2003-2004, respectively. After considering the carbon in grains, the cropland became a carbon source, which was 340.5 and 107.5 gC·m-2·a-1 in years 2002-2003 and 2003-2004, respectively. Affected by climate and filed managements, inter-annual carbon exchange varied largely in the wheat and maize rotation system of North China Plain.  相似文献   

13.
Using data from eddy covariance measurements in a subtropical coniferous forest, a test and evaluation have been made for the model of Carbon Exchange in the Vegetation-Soil-Atmosphere (CEVSA) that simulates energy transfers and water, carbon and nitrogen cycles based on ecophysiological processes. In the present study, improvement was made in the model in calculating LAI, carbon allocation among plant organs, litter fall, decomposition and evapotranspiration. The simulated seasonal variations in carbon and water vapor flux were consistent with the measurements. The model explained 90% and 86% of the measured variations in evapotranspiration and soil water content. However, the modeled evapotranspiration and soil water content were lower than the measured systematically, because the model assumed that water was lost as runoff if it was beyond the soil saturation water content, but the soil at the flux site with abundant rainfall is often above water saturated. The improved model reproduced 79% and 88% of the measured variations in gross primary production (GPP) and ecosystem respiration (Re), but only 31% of the variations in measured net ecosystem exchange (NEP) despite the fact that the modeled annual NEP was close to the observation. The modeled NEP was generally lower in winter and higher in summer than the observations. The simulated responses of photosynthesis and respiration to water vapor deficit at high temperatures were different from measurements. The results suggested that the improved model underestimated ecosystem photosynthesis and respiration in extremely condition. The present study shows that CEVSA can simulate the seasonal pattern and magnitude of CO2 and water vapor fluxes, but further improvement in simulating photosynthesis and respiration at extreme temperatures and water deficit is required.  相似文献   

14.
Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique was made at two ChinaFLUX forest sites including the young subtropical Pinus plantation (Qianyanzhou) and old temperate broad-leaved Korean pine mixed forest (Changbai Mountains) as part of the ChinaFLUX network. Seasonal patterns and environmental control of ecosystem respiration in the subtropical and temperate forests were evaluated by the often-used multiplicative model and Q10 model as a function of temperature and soil water content. The resuits suggested that ( i ) temperature was found to be a dominant factor in the ecosystem respiration, and most of the temporal variability of ecosystem respiration was explained by temperature. However, in the drought-stressed ecosystem, soil water content controlled the temporal variability of ecosystem respiration other than temperature effects, and soil water content became a dominat factor when severe drought affected the ecosystem respiration; (ii) the regression models analysis revealed that in the drier soil, ecosystem respiration was more sensitive to soil moisture than was expressed by the often-used multiplicative model. It was possible to accurately estimate the seasonal variation of ecosystem respiration based on the Q10 model; and (iii)annual ecosystem respiration derived from the often-used multiplicative model was 1209 g C m-2and 1303 g C m-2, and was consistently a little higher than the Q10 model estimates of 1197 g C m-2 and 1268 g C m-2 for Qianyanzhou and Changbai Mountains, respectively.  相似文献   

15.
It is more and more popular to estimate the exchange of water vapor, heat and CO2fluxes between the land surface and the atmosphere using the eddy covariance technique. To get believable fluxes, it is necessary to correct the observations based on the different surface conditions and to determine relevant techinical parameters. The raw 10 Hz eddy covariance data observed in the Yucheng and Changbai Mountains stations were recalculated by various averaging periods (from 1 to 720 min) respectively, and the recalculated results were compared with the results calculated by the averaging period of 30 mins. Meanwhile, the distinctions of fluxes calculated by different averaging periods were analyzed. The continuous 15 days observations over wheat fields in the Yucheng station were mainly analyzed. The results are shown that: (i) In the Yucheng station, compared with the observations by 30 min, when the averaging period changes from 10 to 60 min, the variations of the eddy-covariance estimates of fluxes were less than 2%; when the averaging period changes less than 10 min, the estimate of fluxes reduced obviously with the reduction of the averaging period (the max relative error was -12%); and when the averaging period exceeds 120 min, the eddy covariance estimates of fluxes will be increased and become unsteady (the max relative error is over 10%); (ii) the eddy covariance estimates of fluxes over wheat field in the Yucheng station suggusted that it is much better to take 10 min as an averaging period in studying diurnal change of fluxes, and take 30min for a long-term flux observation; and (iii) normalized ratio was put forward to determine the range of averaging period of eddy covariance measurements. By comparing the observations over farmlands and those over forests, it is indicated that the increase of eddy covariance estimates over tall forest was more than that over short vegetation when the averaging period increased.  相似文献   

16.
For flux measurement, the eddy covariance technique supplies a possibility to directly measure the exchange between vegetation and atmosphere; and there are two kinds of eddy covariance systems, open-path and close-path systems. For the system error, it may result in difference of flux measurements by two systems. Therefore, it is necessary to compare the measured results from them. ChinaFLUX covers of eight sites applied the micrometeorological method, in which Changbai Mountains (CBS) and Qianyanzhou (QYZ) carried out open-path eddy covariance (OPEC) and close-path eddy covariance (CPEC) measurements synchronously.In this paper the data sets of CBS and QYZ were employed. The delay time of close-path analyzer to the open-path analyzer was calculated; the spectra and cospectra of time-series data of OPEC and CPEC were analyzed; the open-path flux measurement was used as a standard comparison, the close-path flux measurement results were evaluated. The results show that, at two sites the delay time of CO2 density for close-path analyzer was about 7.0-8.0 s, H2O density about 8.0-9.0 s; the spectrum from the open-path, close-path and 3D sonic anemometer was consistent with the expected -2/3 slope (log-log plot), and the cospectra showed the expected slope of -4/3 in the internal subrange; the CO2 flux measured by the close-path sensor was about 84% of that of open-path measurement at QYZ, about 80% at CBS, and the latent heat flux was balanced for two systems at QYZ, 86% at CBS. From the flux difference between open-path and close-path analyzers, it could be inferred that the attenuation of turbulent fluctuations in flow through tube of CPEC affected H2O flux more significantly than CO2 flux. The gap between two systems was bigger at CBS than at QYZ; the diurnal variation in CO2 flux of two measurement systems was very consistent.  相似文献   

17.
Components of the energy budget were measured continuously above a 300‐year‐old temperate mixed forest at the Changbaishan site, northeastern China, from 1 January to 31 December 2003, as a part of the ChinaFlux programme. The albedo values above the canopy were lower than most temperate forests, and the values for snow‐covered canopy were over 50% higher than for the snow‐free canopy. In winter, net radiation Rn was generally less than 5% of the summer value due to high albedo and low incoming solar radiation. The annual mean latent heat LE was 37·5 W m?2, accounting for 52% of Rn. The maximum daily evaporation was about 4·6 mm day?1 in summer. Over the year, the accumulated precipitation was 578 mm; this compares with 493 mm of evapotranspiration, which shows that more than 85% of water was returned to the atmosphere through evapotranspiration. The LE was strongly affected by the transpiration activity and increased quickly as the broadleaved trees began to foliate. The sensible heat H dropped at that time, although Rn increased. Consequently, the seasonal variation in the Bowen ratio β was clearly U‐shaped, and the minimum value (0·1) occurred on a sunny day just after rain, when most of the available energy was used for evapotranspiration. Negative β values occurred occasionally in the non‐growing season as a result of intensive radiative cooling and the presence of water on the surface. The β was very high (up to 13·0) in snow‐covered winter, when evapotranspiration was small due to low surface temperature and available soil water. Vegetation phenology and soil moisture were the key variables controlling the available energy partitioning between H and LE. Energy budget closure averaged better than 86% on a half‐hourly basis, with slightly greater closure on a daily basis. The degree of closure showed a dependence on friction velocity u*. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
We measured soil, stem and branch respiration of trees and shrubs, foliage photosynthesis and respiration in ecosystem of the needle and broad-leaved Korean pine forest in Changbai Mountain by LI-6400 CO2 analysis system. Measurement of forest microclimate was conducted simultaneously and a model was found for the relationship of soil, stem, leaf and climate factors. CO2 flux of different components in ecosystem of the broad-leaved Korean pine forest was estimated based on vegetation characteristics. The net ecosystem exchange was measured by eddy covariance technique. And we studied the effect of temperature and photosynthetic active radiation on ecosystem CO2 flux. Through analysis we found that the net ecosystem exchange was affected mainly by soil respiration and leaf photosynthesis. Annual net ecosystem exchange ranged from a minimum of about -4.671μmol·m-2·s-1 to a maximum of 13.80μmol·m-2·s-1, mean net ecosystem exchange of CO2 flux was -2.0μmol·m-2·s-1 and 3.9μmol·m-2·s-1 in winter and summer respectively (mean value during 24 h). Primary productivity of tree, shrub and herbage contributed about 89.7%, 3.5% and 6.8% to the gross primary productivity of the broad-leaved Korean pine forest respectively. Soil respiration contributed about 69.7% CO2 to the broad-leaved Korean pine forest ecosystem, comprising about 15.2% from tree leaves and 15.1% from branches. The net ecosystem exchange in growing season and non-growing season contributed 56.8% and 43.2% to the annual CO2 efflux respectively. The ratio of autotrophic respiration to gross primary productivity (Ra:GPP) was 0.52 (NPP:GPP=0.48). Annual carbon accumulation underground accounted for 52% of the gross primary productivity, and soil respiration contributed 60% to gross primary productivity. The NPP of the needle and broad-leaved Korean pine forest was 769.3 gC·m-2·a-1. The net ecosystem exchange of this forest ecosystem (NEE) was 229.51 gC·m-2·a-1. The NEE of this forest ecosystem acquired by eddy covariance technique was lower than chamber estimates by 19.8%.  相似文献   

19.
The North China Plain, which is critical for food production in China, is encountering serious water shortage due to heavy agricultural water requirement. The accurate modelling of carbon dioxide flux and evapotranspiration (ET) in croplands is thus essential for yield prediction and water resources management. The land surface model is powerful in simulating energy and carbon dioxide fluxes between land and atmosphere. Some key processes in the Simple Biosphere Model (Version 2, SiB2) were parameterized based on the observations. The simulated fluxes were tested against the eddy covariance flux measurements over two typical winter wheat/maize double cropping fields. A simple diagnostic parameterisation of soil respiration, not included in SiB2, was added and calibrated using the observations to model the carbon budget. The Ball‐Berry stomatal conductance model was calibrated using observed leaf gas exchange rate, showing that the original SiB2 could significantly underpredict the ET in the wheat field. SiB2 significantly underpredicted soil resistance at the Weishan site, leading to overpredict the ET. Overall, there was a close agreement between the simulated and observed latent heat fluxes and net CO2 exchange using the re‐parameterized SiB2. These findings are important when the model is used for the regional simulation in the North China Plain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique is made at the Qianyanzhou mid-subtropical planted forest as part of the ChinaFLUX network. Qianyanzhou planted forest is affected by typical subtropical continental monsoon climate. It has plentiful water and heat resource but is in inconsistency of its seasonal distribution in the mid-subtropical region, thus seasonal drought frequently occurs in this planted forest. In this study, seasonal drought effect on ecosystem carbon sequestration was analyzed based on net ecosystem productivity (NEP), ecosystem respiration (RE) and gross ecosystem productivity (GEP) at the month scale in 2003 and 2004. In this drought-stressed planted forest, ecosystem carbon sequestration showed a clear seasonality, with low rates during seasonal drought and in winter. The declining degree of ecosystem carbon sequestration under the seasonal drought condition was determined by the accumulation of soil moisture deficits and a co-occurrence of high temperatures. Different drought effects are expected for RE and GEP. The net effect of ecosystem carbon balance depends on how these two quantities are affected relatively to each other. Summer drought and heat wave are two aspects of weather that likely play an important part in the annual NEP of forest in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号