首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The response of an ideal elastic half‐space to a line‐concentrated impulsive vector shear force applied momentarily is obtained by an analytical–numerical computational method based on the theory of characteristics in conjunction with kinematical relations derived across surfaces of strong discontinuities. The shear force is concentrated along an infinite line, drawn on the surface of the half‐space, while being normal to that line as well as to the axis of symmetry of the half‐space. An exact loading model is introduced and built into the computational method for this shear force. With this model, a compatibility exists among the prescribed applied force, the geometric decay of the shear stress component at the precursor shear wave, and the boundary conditions of the half‐space; in this sense, the source configuration is exact. For the transient boundary‐value problem described above, a wave characteristics formulation is presented, where its differential equations are extended to allow for strong discontinuities which occur in the material motion of the half‐space. A numerical integration of these extended differential equations is then carried out in a three‐dimensional spatiotemporal wavegrid formed by the Cartesian bicharacteristic curves of the wave characteristics formulation. This work is devoted to the construction of the computational method and to the concepts involved therein, whereas the interpretation of the resultant transient deformation of the half‐space is presented in a subsequent paper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
First, the response of an ideal elastic half‐space to a line‐concentrated impulsive normal load applied to its surface is obtained by a computational method based on the theory of characteristics in conjunction with kinematical relations derived across surfaces of strong discontinuities. Then, the geometry is determined of the obtained waves and the source signature—the latter is the imprint of the spatiotemporal configuration of the excitation source in the resultant response. Behind the dilatational precursor wave, there exists a pencil of three plane waves extending from the vertex at the impingement point of the precursor wave on the stress‐free surface of the half‐space to three points located on the other two boundaries of the solution domain. These four wave‐arresting points (end points) of the three plane waves constitute the source signature. One wave is an inhibitor front in the behaviour of the normal stress components and the particle velocity, while in the behaviour of the shear stress component, it is a surface‐axis wave. The second is a surface wave in the behaviour of the horizontal components of the dependent variables, while the third is an inhibitor wave in the behaviour of the shear stress component. An inhibitor wave is so named, since beyond it, the material motion is dying or becomes uniform. A surface‐axis wave is so named, since upon its arrival, like a surface wave, the dependent variable in question features an extreme value, but unlike a surface wave, it exists in the entire depth of the solution domain. It is evident from this work that Saint‐Venant's principle for wave propagation problems cannot be formulated; therefore, the above results are a consequence of the particular model proposed here for the line‐concentrated normal load. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents transient deformation of an elastic half‐space under two types of line‐concentrated impulsive loads applied simultaneously. One load is a sustainable normal force, while the other is a momentarily applied vector shear force. For each of the two loads the author gave the respective solution in two separate papers. Here the two solutions are superimposed to determine the response of the half‐space under the combined loads. The present work is devoted to the salient wave propagation features seen in the resultant computer plots that disclose the strained half‐space. Since each critical deformation is explicitly indicated in the plots by a wave front, the interpretation of the response of the half‐space to the applied load is readily available at a glance. A comparison is then presented that identifies those deformation traits and wave fronts, among the nineteen here, that are more closely related to those found in previous works. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
An analytical solution of the plane strain problem of the deformation of a homogeneous, isotropic, poroelastic layer of uniform thickness overlying a homogeneous, isotropic, elastic half‐space due to two‐dimensional seismic sources buried in the elastic half‐space has been obtained. The integral expressions for the displacements, stresses and pore pressure have been obtained using the stress function approach by applying suitable boundary conditions at the free surface and the interface. The solution obtained is in the Laplace–Fourier transform domain. The case of a vertical dip‐slip line dislocation for the oceanic crust model of Earth is studied in detail. Schapery's formula is used for the Laplace inversion and the extended Simpson's formula for the Fourier inversion. Diffusion of pore pressure in the layer is studied numerically. Contour maps showing the pore pressure in the poroelastic layer have been plotted. The effect of the compressibility of the solid and fluid constituents on pore pressure has also been studied. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, the dynamic response of a poroelastic half‐space to a point fluid sink is investigated using Biot's dynamic theory of poroelasticity. Based on Biot's theory, the governing field equations are re‐formulated in frequency domain with solid displacement and pore pressure. In a cylindrical coordinate system, a method of displacement potentials for axisymmetric displacement field is proposed to decouple the Biot's field equations to three scalar Helmholtz equations, and then the general solution to axisymmetric problems are obtained. The full‐space fundamental singular solution for a point sink is also derived using potential methods. The mirror‐image method is finally applied to construct the fundamental solution for a point sink buried in a poroelastic half‐space. Furthermore, a numerical study is conducted for a rock, that is, Berea sandstone, as a representative example. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A hybrid finite element method and differential quadrature method (DQM) is developed to estimate the dynamic response of two‐dimensional multilayered half‐spaces subjected to impulsive point loading. Nonreflecting absorbing boundary conditions consist of appropriate springs, and dampers are considered. The capabilities of the finite element method for solving boundary value problems with general domain, loading and systematic boundary treatment are combined with accurate and stable time marching capabilities of the DQM to develop an accurate and efficient numerical technique. The capability, efficiency, robustness and convergence of the DQM for solving the dynamic problem are demonstrated through numerical simulations of various half‐spaces with different time increments and layer arrangement. Also, comparison study when using Newmark's time integration scheme for the same problem is done. It can be concluded that the DQM as an unconditionally stable method is suitable for solving such a problem. Also, parametric study is performed to show the effect of the absorbing boundary conditions on the dynamic response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
An analytical investigation of a half‐space containing transversely isotropic material under forced vertical and horizontal displacements applied on a rectangular rigid foundation is presented in this paper. With the goal of a rigorous solution to the shape‐ and rigidity‐ induced singular mixed boundary value problem, the formulation employs scalar potential representation, the Fourier expansion and the Hankel integral transforms method to obtain the surface arbitrary point‐load solution in cylindrical coordinate system. The obtained Green's functions are rewritten in rectangular coordinate system, allowing the response of the half‐space because of an arbitrary distributed load on a rectangular surface area be given in terms of a double integral. The numerical evaluations of stresses are done with the use of an element, which is singular at the edge and the corner of the rectangle. Upon the imposition of the rigidity displacement boundary condition for a rigid foundation and the use of a set of two‐dimensional adaptive‐gradient elements, which can capture the singular behavior in the contact stress effectively, a set of new numerical results are presented to illustrate the effect of transverse isotropy on the foundation response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A problem of reflection and transmission of shear wave incident upon a corrugated interface between two monoclinic solid half‐spaces have been investigated. Rayleigh's method of approximation is used to investigate the reflection and transmission coefficients for first and second approximation of the corrugation. For a special interface, closed‐form expressions of these coefficients for the first order approximation of the corrugation are obtained. It is found that these coefficients are functions of amplitude of corrugation, elastic parameters of the media, frequency of the incident wave and angle of incidence. The numerical computations are performed for a specific model and the results obtained are presented graphically. It is found that the reflection and transmission coefficients are strongly influenced by the corrugation and the elastic properties of the media. Results of some earlier workers in this field have been reduced as particular case from the present formulation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
A theoretical formulation is presented for the determination of the interaction of a vertically loaded disc embedded in a transversely isotropic half‐space. By means of a complete representation using a displacement potential, it is shown that the governing equations of motion for this class of problems can be uncoupled into a fourth‐order partial differential equation. With the aid of Hankel transforms, a relaxed treatment of the mixed‐boundary value problem is formulated as dual integral equations, which, in turn, are reduced to a Fredholm equation of the second kind. In addition to furnishing a unified view of existing solutions for zero and infinite embedments, the present treatment reveals a severe boundary‐layer phenomenon, which is apt to be of interest to this class of problems in general. The present solutions are analytically in exact agreement with the existing solutions for a half‐space with isotropic material properties. To confirm the accuracy of the numerical evaluation of the integrals involved, numerical results are included for cases of different degrees of the material anisotropy and compared with existing solutions. Further numerical examples are also presented to elucidate the influence of the degree of the material anisotropy on the response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents an analysis of the rocking vibrations of a rigid cylindrical foundation embedded in poroelastic soil. The foundation is subjected to time‐harmonic rocking excitation and is perfectly bonded to the surrounding soil. The soil underlying the foundation base is represented by a homogeneous poroelastic half‐space, whereas the soil along the side of the foundation is modeled as an independent poroelastic stratum composed of a series of infinitesimally thin layers. The behavior of the soil is governed by Biot's poroelastodynamic theory. The contact surface between the foundation base and the poroelastic soil is assumed to be smooth and either fully permeable or impermeable. The dynamic interaction problem is solved by employing a simplified analytical method. Some numerical results for the nondimensional rocking dynamic impedance and nondimensional angular displacement amplitude of the foundation are presented to show the effect of nondimensional frequency of excitation, poroelastic material parameters, hydraulic boundary condition, depth ratio and mass ratio of the foundation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we have attempted a problem of reflection and refraction of plane harmonic SH‐wave at a corrugated interface between two different perfectly conducting self‐reinforced elastic half‐spaces. Rayleigh's method is employed to find out the expressions of reflection and refraction coefficients for first‐ and second‐order approximation of the corrugation. The expressions of these coefficients show that they depend on the properties of half‐spaces, angle of incidence, frequency of the incident wave and are strongly influenced by the corrugation of the interface. Numerical computations are performed for a particular model having special type of interface and the variation of these coefficients are depicted graphically against the angles of incidence, frequency parameter, corrugation parameter at different values of reinforcement parameters. Results of some earlier works are reduced as a particular case of this formulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A transversely isotropic multi‐layered half‐space, with axis of material symmetry perpendicular to the free surface, supports a flexible either annular or solid circle foundation. The contact area of the foundation and the half‐space is considered to be both frictionless and tensionless. The foundation is assumed to be affected by a vertical static axisymmetric load. Detailed analysis of the interaction of these two systems with different thickness of layers is the target of this paper. With the use of ring load Green's functions for both the foundation and the continuum half‐space, an integral equation accompanied with some inequalities is introduced to model the complex BVP. With the incorporation of ring‐shape FEM, we are capable of capturing both regular and singular solution smoothly. The validity of the combination of the analytical and numerical method is proved with comparing the results of this paper with a number of benchmark cases of both linear and nonlinear interaction of circular and annular foundation with half‐space. Some new illustrations are presented to portray the aspect of the anisotropy and layering of the half‐space. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A transversely isotropic linear elastic half‐space, z?0, with the isotropy axis parallel to the z‐axis is considered. The purpose of the paper is to determine displacements and stresses fields in the interior of the half‐space when a rigid circular disk of radius a completely bonded to the surface of the half‐space is rotated through a constant angle θ0. The region of the surface lying out with the circle r?a, is free from stresses. This problem is a type of Reissner–Sagoci mixed boundary value problems. Using cylindrical co‐ordinate system and applying Hankel integral transform in the radial direction, the problem may be changed to a system of dual integral equations. The solution of the dual integral equations is obtained by an approach analogous to Sneddon's (J. Appl. Phys. 1947; 18 :130–132), so that the circumferential displacement and stress fields inside the medium are obtained analytically. The same problem has already been approached by Hanson and Puja (J. Appl. Mech. 1997; 64 :692–694) by the use of integrating the point force potential functions. It is analytically proved that the present solution, although of a quite different form, is equivalent to that given by Hanson and Puja. To illustrate the solution, a few plots are provided. The displacements and the stresses in a soil deposit due to a rotationally symmetric force or boundary displacement may be obtained using the results of this paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
A single pile embedded in a layered poroelastic half‐space subjected to a harmonic lateral load is investigated in this study. Based on Biot's theory, the frequency domain fundamental solution for a horizontal circular patch load applied in the layered poroelastic half‐space is derived via the transmission and reflection matrices method. Utilizing Muki and Sternberg's method, the second kind of Fredholm integral equation describing the dynamic interaction between the layered half‐space and the pile subjected to a top harmonic lateral load is constructed. The proposed methodology is validated by comparing results of this paper with some existing results. Numerical results show that for a two‐layered half‐space, the thickness of the upper softer layer has pronounced influences on the dynamic response of the pile and the half‐space. For a three‐layered half‐space, the presence of a softer middle layer in the layered half‐space will enhance the compliance for the pile significantly, while a stiffer middle layer will diminish the dynamic compliance of the pile considerably. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
By virtue of a pair of scalar potentials for the displacement of the solid skeleton and the pore fluid pressure field of a saturated poroelastic medium, an alternative solution method to the Helmholtz decomposition is developed for the wave propagation problems in the framework of Biot's theory. As an application, a comprehensive solution for three‐dimensional response of an isotropic poroelastic half‐space with a partially permeable hydraulic free surface under an arbitrarily distributed time‐harmonic internal force field and fluid sources is developed. The Green's functions for the poroelastic fields, corresponding to point, ring, and disk loads, are reduced to semi‐infinite complex‐valued integrals that can be evaluated numerically by an appropriate quadrature scheme. Analytical and numerical comparisons are made with existing elastic and poroelastic solutions to illustrate the quality and features of the solution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The reflection and transmission phenomena of elastic waves incident at a corrugated interface between two dissimilar fibre‐reinforced elastic half‐spaces have been analysed. Using Rayleigh method of approximation, the expressions of the reflection and transmission coefficients are obtained in closed form for the plane interface as well as for the first order approximation of the periodic interface ζ = d cos px. All these reflection and transmission coefficients of regular and irregular waves are found to be the functions of angle of incidence and elastic parameters of the media. Moreover, the coefficients of irregularly reflected and transmitted waves are found to be proportional to the amplitude of the corrugated interface and are functions of the frequency of the incident wave. Numerical computations have been performed for a specific model to compute these coefficients and results obtained are shown graphically. The results of Singh and Singh (Sadhana 2004; 29 :249–257) and Ben‐Menahem and Singh (Seismic Waves and Sources. Springer: New York) have been derived from our analysis as particular cases. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A method is presented for coupling cubic‐order quadrilateral finite elements with the finite side of a new coordinate ascent hierarchical infinite element. At a common side shared by a hierarchical infinite element and an arbitrary number of finite elements, the displacements are minimized in the least square sense with respect to the degrees‐of‐freedom of the finite elements. This leads to a set of equations that relate the degrees‐of‐freedom of the finite and hierarchical infinite elements on the shared side. The method is applied to a non‐homogeneous cross‐anisotropic half‐space subjected to a non‐uniform circular loading with Young's and shear moduli varying with depth according to the power law. A constant mesh constructed from coupled finite and hierarchical infinite elements is used and convergence is sought simply by increasing the degree of the interpolating polynomial. The displacements and stresses produced by conical and parabolic circular loads applied on the surface are obtained. The efficiency of the proposed method is demonstrated through convergence and comparison studies. New results produced by a frusto‐conical circular load applied on the surface of a half‐space made up of heavily consolidated London clay are provided. The non‐homogeneity parameter and degree of anisotropy are shown to influence the soil response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In many areas of engineering practice, applied loads are not uniformly distributed but often concentrated towards the centre of a foundation. Thus, loads are more realistically depicted as distributed as linearly varying or as parabola of revolution. Solutions for stresses in a transversely isotropic half‐space caused by concave and convex parabolic loads that act on a rectangle have not been derived. This work proposes analytical solutions for stresses in a transversely isotropic half‐space, induced by three‐dimensional, buried, linearly varying/uniform/parabolic rectangular loads. Load types include an upwardly and a downwardly linearly varying load, a uniform load, a concave and a convex parabolic load, all distributed over a rectangular area. These solutions are obtained by integrating the point load solutions in a Cartesian co‐ordinate system for a transversely isotropic half‐space. The buried depth, the dimensions of the loaded area, the type and degree of material anisotropy and the loading type for transversely isotropic half‐spaces influence the proposed solutions. An illustrative example is presented to elucidate the effect of the dimensions of the loaded area, the type and degree of rock anisotropy, and the type of loading on the vertical stress in the isotropic/transversely isotropic rocks subjected to a linearly varying/uniform/parabolic rectangular load. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
In this article, we present the solutions for the stresses induced by four different loads associated with an axially loaded pile in a continuously inhomogeneous cross‐anisotropic half‐space. The planes of cross‐anisotropy are parallel to the horizontal surface of the half‐space, and the Young's and shear moduli are assumed to vary exponentially with depth. The four loading types are: an embedded point load for an end‐bearing pile, uniform skin friction, linear variation of skin friction, and non‐linear parabolic variation of skin friction for a friction pile. The solutions for the stresses due to the pile load are expressed in terms of the Hankel integral and are obtained from the point load solutions of the same inhomogeneous cross‐anisotropic half‐space which were derived recently by the authors (Int. J. Rock Mech. Min. Sci. 2003; 40 (5):667–685). A numerical procedure is proposed to carry out the integral. For the special case of homogeneous isotropic and cross‐anisotropic half‐space, the stresses predicted by the numerical procedure agree well with the solutions of Geddes and Wang (Geotechnique 1966; 16 (3):231–255; Soils Found. 2003; 43 (5):41–52). An illustrative example is also given to investigate the effect of soil inhomogeneity, the type and degree of soil anisotropy, and the four different loading types on the vertical normal stress. The presented solutions are more realistic in simulating the actual stratum of loading problem in many areas of engineering practice. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
The study of surface wave in a layered medium has their possible application in geophysical prospecting. In the present work, dispersion equation for torsional wave in an inhomogeneous isotropic layer between inhomogeneous isotropic half‐spaces has been derived. Two cases are discussed separately for torsional wave propagation in inhomogeneous layer between homogeneous and non‐homogeneous half‐spaces, respectively. Further, two possible modes for torsional wave propagation are obtained in case of inhomogeneous layer sandwiched between non‐homogeneous half‐spaces. Closed form solutions for displacement in the layer and half‐spaces are obtained in each case. The study reveals that the layer width, layer inhomogeneity, frequency of inhomogeneity, as well as inhomogeneity in the half‐space has significant effect on the propagation of torsional surface waves. Displacement and implicit dispersion equation for torsional wave velocities are expressed in terms of Heun functions and their derivatives. Effects of inhomogeneity on torsional wave velocity are also discussed graphically by plotting the dimensionless phase velocity against dimensionless and scaled wave number for different values of inhomogeneity parameter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号