首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical approach using the three‐dimensional displacement of a soil is investigated to provide analytical solutions of the horizontal response of a circular pile subjected to lateral loads in nonhomogeneous soil. The rocking stiffness coefficient of the pile shaft in homogeneous soil is derived from the analytical solution taking into account the three‐dimensional displacement represented in terms of scalar potentials in the elastic three‐dimensional analysis. The lateral stiffness coefficient of the pile shaft in nonhomogeneous soil is derived from the rocking stiffness coefficient taking into account the rocking rotation of a rigid pile shaft. The relationship between horizontal displacement, rotation, moment, and shear force of a pile subjected to horizontal loads in nonhomogeneous soil is obtainable in the form of the recurrence equation. The formulation of the lateral displacement and rotation of the pile base subjected to lateral loads in nonhomogeneous soils is presented by taking into account Mindlin's equation and the equivalent thickness for soil layers in the equivalent elastic method. There is little difference between lateral, rocking, and couple stiffness coefficients each obtained from both the two‐dimensional and three‐dimensional methods except for the case of Poisson's ratio near 0.5. The comparison of results calculated by the current method for a pile subjected to lateral loads in homogeneous and nonhomogeneous soils has shown good agreement with those obtained from analytical and numerical methods. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
An analytical approach using a Winkler model based on two lateral soil displacement components in a three‐dimensional soil is investigated to provide analytical solutions of horizontal response of a rectangular pile subjected to lateral loads in nonhomogeneous soil. The two lateral displacement components of a soil surrounding the rectangular pile are represented by the Fourier series of displacement potential functions in the elastic three‐dimensional analysis. The lateral stiffness coefficient of the rectangular pile shaft in nonhomogeneous soil is derived from the rocking stiffness coefficient taking into account rocking rotation of a rigid pile shaft. The relationship between horizontal displacement, rotation, moment, and shear force for the rectangular pile subjected to horizontal loads in nonhomogeneous soil is obtainable in the form of the recurrence equation. The formulation of lateral displacement and rotation for a rectangular pile subjected to lateral loads on the pile base in nonhomogeneous soil is proposed by taking into account Mindlin's equation and the equivalent thickness for soil layers in the equivalent elastic method. The difference of lateral behavior between square and circular piles subjected to lateral loads is insignificant. The effect of aspect ratio of the rectangular pile on the lateral behavior is great for the lower stiffness ratio between pile and soil and the larger length–equivalent diameter ratio. The effect of the value of Poisson's ratio of soil on lateral stiffness coefficient is relatively small except Poisson's ratio close to 0.5. The comparison of the results calculated by the current method for a rectangular pile subjected to lateral loads in nonhomogeneous soil has shown good agreement with those obtained from the analytical methods and the finite element method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Piles may be subjected to lateral soil pressures as a result of lateral soil movements from nearby construction‐related activities such as embankment construction or excavation operations. Three‐dimensional finite element analyses have been carried out to investigate the response of a single pile when subjected to lateral soil movements. The pile and the soil were modelled using 20‐node quadrilateral brick elements with reduced integration. For compatibility between the soil–pile interface elements, 27‐node quadrilateral brick elements with reduced integration were used to model the soil around the pile adjacent to the soil–pile interface. A Mohr–Coulomb elastic–plastic constitutive model with large‐strain mode was assumed for the soil. The analyses indicate that the behaviour of the pile was significantly influenced by the pile flexibility, the magnitude of soil movement, the pile head boundary conditions, the shape of the soil movement profile and the thickness of the moving soil mass. Reasonable agreement is found between some existing published solutions and those developed herein. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
In many areas of engineering practice, applied loads are not uniformly distributed but often concentrated towards the centre of a foundation. Thus, loads are more realistically depicted as distributed as linearly varying or as parabola of revolution. Solutions for stresses in a transversely isotropic half‐space caused by concave and convex parabolic loads that act on a rectangle have not been derived. This work proposes analytical solutions for stresses in a transversely isotropic half‐space, induced by three‐dimensional, buried, linearly varying/uniform/parabolic rectangular loads. Load types include an upwardly and a downwardly linearly varying load, a uniform load, a concave and a convex parabolic load, all distributed over a rectangular area. These solutions are obtained by integrating the point load solutions in a Cartesian co‐ordinate system for a transversely isotropic half‐space. The buried depth, the dimensions of the loaded area, the type and degree of material anisotropy and the loading type for transversely isotropic half‐spaces influence the proposed solutions. An illustrative example is presented to elucidate the effect of the dimensions of the loaded area, the type and degree of rock anisotropy, and the type of loading on the vertical stress in the isotropic/transversely isotropic rocks subjected to a linearly varying/uniform/parabolic rectangular load. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a numerical formulation for a three dimensional elasto‐plastic interface, which can be coupled with an embedded beam element in order to model its non‐linear interaction with the surrounding solid medium. The formulation is herein implemented for lateral loading of piles but is able to represent soil‐pile interaction phenomena in a general manner for different types of loading conditions or ground movements. The interface is formulated in order to capture localized material plasticity in the soil surrounding the pile within the range of small to moderate lateral displacements. The interface is formulated following two different approaches: (i) in terms of beam degrees of freedoms; and (ii) considering the displacement field of the solid domain. Each of these alternatives has its own advantages and shortcomings, which are discussed in this paper. The paper presents a comparison of the results obtained by means of the present formulation and by other well‐established analysis methods and test results published in the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
宋林辉  梅国雄  宰金珉 《岩土力学》2007,28(5):1035-1039
桩与地基土之间的相互作用是横向承载桩研究的重要组成部分,相互作用的土反力是挠度和深度的非线性函数,即桩的变形和受力之间呈非线性变化,这种非线性导致了横向承载桩的分析计算十分繁杂。针对问题研究的复杂性,从考虑位移的朗肯土压力理论入手,根据桩出现挠度后引起周边土体的位移量,推导出桩周土反力表达式,在不引入任何地基模型的条件下计算桩身任意深度处基于桩体位移的土反力,简化了问题的分析过程。通过设定算例进行分析,所得出的结果与p-y曲线结果以及实际情况一致,证明了该计算方法的合理性。  相似文献   

8.
The dynamic response of an end bearing pile embedded in a linear visco‐elastic soil layer with hysteretic type damping is theoretically investigated when the pile is subjected to a time‐harmonic vertical loading at the pile top. The soil is modeled as a three‐dimensional axisymmetric continuum in which both its radial and vertical displacements are taken into account. The pile is assumed to be vertical, elastic and of uniform circular cross section. By using two potential functions to decompose the displacements of the soil layer and utilizing the separation of variables technique, the dynamic equilibrium equation is uncoupled and solved. At the interface of soil‐pile system, the boundary conditions of displacement continuity and force equilibrium are invoked to derive a closed‐form solution of the vertical dynamic response of the pile in frequency domain. The corresponding inverted solutions in time domain for the velocity response of a pile subjected to a semi‐sine excitation force applied at the pile top are obtained by means of inverse Fourier transform and the convolution theorem. A comparison with two other simplified solutions has been performed to verify the more rigorous solutions presented in this paper. Using the developed solutions, a parametric study has also been conducted to investigate the influence of the major parameters of the soil‐pile system on the vertical vibration characteristics of the pile. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
土体水平位移对邻近既有桩基承载性状影响分析   总被引:1,自引:0,他引:1  
城市建设中经常会遇到由于堆载或基坑开挖所引起的土体水平位移现象,土体水平位移的作用会使邻近建筑物的桩基础产生附加内力或变形,并可能导致邻近桩基的破坏而发生工程事故。针对此类问题,基于Winkler地基模型以及桩-土变形协调条件,建立单桩水平位移控制方程,根据内力与位移的微分关系,采用两阶段方法进行求解。结合典型的工程事故,通过参数分析,研究土体水平位移对邻近桩基承载性状的影响程度。分析表明,基坑工程围护墙体的稳定和开挖深度对邻近桩基的安全有着重要影响,并提出了近期发生在上海的某小高层楼房整体倒覆事故的一种可能原因。  相似文献   

10.
Pile foundations are frequently subjected to cyclic lateral loads. Wave and wind loads on offshore structures will be applied in different directions and times during the design life of a structure. Therefore, the magnitude and direction of these loads in conjunction with the dead loads should be considered. This paper investigates a loading scenario where a monotonic lateral load is applied to a pile, followed by two‐way cycling in a direction perpendicular to the initial loading. This configuration is indicative of the complexity of loading that may be considered and is referred to in the paper as ‘T‐shaped’ loading. The energy‐based numerical model employed considers two‐dimensional lateral loading in an elasto‐plastic soil, with coupled behaviour between the two perpendicular directions by local yield surfaces along the length of the pile. The behaviour of the soil–pile system subjected to different loading combinations has been divided into four categories of shakedown previously proposed for cyclic loading of structures and soils. A design chart has been created to illustrate the type of pile behaviour for a given two‐dimensional loading scenario. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In a series of previous works, the plane strain and the axisymmetric cases of the so‐called active trapdoor problem have been modeled by virtue of Litwiniszyn's theory of deep subsidence. However, in reality, there exist trapdoor base geometries—in plan view—which can be very well approximated by an elliptical boundary. Following the elliptical shape of the trapdoor, the contour lines of subsidence also appear to be similar ellipses. In this work, an elliptic model of deep subsidence is presented, the mentioned hypothesis of the self‐similar subsidence contour lines is validated, and finally a simplified model is presented. For completeness of the present three‐dimensional model analysis, a rectangular model is also considered. Results are finally presented and compared with those of plane strain and axisymmetric problems. Some suggestions that have been proposed in previous similar works are also evaluated and compared with the results of the present study. Finally, some estimates are proposed for different trapdoor base geometries. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Using the continuum‐based finite element approach in conjunction with the strength reduction technique, one can easily find out the factor of safety of a slope with rather high precision, but will encounter some obstacles in the accurate location of the corresponding three‐dimensional critical slip surface (CSS). On the basis of the Mohr–Coulomb failure criterion and the stress field in the limit equilibrium state of the slope, it is deduced that the three‐dimensional CSS is the solution of the Cauchy problem of a quasi‐linear partial differential equation (PDE) of first order. By means of the method of characteristics for the problem, the three‐dimensional CSS that may take any shape can be determined without the specification of its geometry. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
An investigation is made to present analytical solutions provided by a Winkler model approach for analysis of piled rafts with nodular pile subjected to vertical loads in nonhomogeneous soils. The vertical stiffness coefficient along a piled raft with the nodular pile in nonhomogeneous soils is derived from the displacement given by the Mindlin solution for elastic continuum analysis. The vertical stiffness coefficients for the bases of the raft and the nodular part in the nodular pile in a soil are expressed by the Muki solution for the 3‐D elastic analysis. The relationship between settlement and vertical load on the pile base is presented considering the Mindlin solution and the equivalent thickness in the equivalent elastic method. The interaction factor between the shaft of the nodular pile and the soil is expressed taking into account the Mindlin solution and the equivalent elastic modulus. The relationship between settlement and vertical load for a piled raft with the nodular pile in nonhomogeneous soils is obtained by using the recurrence equation of influence factors of the pile for each layer. The percentage of each load carried by both nodular pile and raft subjected to vertical load is represented through the vertical influence factors proposed here. Comparison of the results calculated by the present method for piled rafts with nodular piles in nonhomogeneous soils has shown good agreement with those obtained from the finite element method and a field test. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The shear behavior at the interface between the soil and a structure is investigated at the macroscale and particle‐scale levels using a 3‐dimensional discrete element method (DEM). The macroscopic mechanical properties and microscopic quantities affected by the normalized interface roughness and the loading parameters are analyzed. The macro‐response shows that the shear strength of the interface increases as the normalized roughness of the interface increases, and stress softening and dilatancy of the soil material are observed in the tests that feature rough interfaces. The particle‐scale analysis illustrates that a localized band characterized by intense shear deformation emerges from the contact plane and gradually expands as shearing progresses before stabilizing at the residual stress state. The thickness of the localized band is affected by the normalized roughness of the interface and the normal stress, which ranges between 4 and 5 times that of the median grain diameter. A thicker localized band is formed when the soil has a rough shearing interface. After the localized band appears, the granular material structuralizes into 2 regions: the interface zone and the upper zone. The mechanical behavior in the interface zone is representative of the interface according to the local average stress analysis. Certain microscopic quantities in the interface zone are analyzed, including the coordination number and the material fabric. Shear at the interface creates an anisotropic material fabric and leads to the rotation of the major principal stress.  相似文献   

15.
An investigation is made to present analytical solutions provided by a Winkler model approach for the analysis of single piles and pile groups subjected to vertical and lateral loads in nonhomogeneous soils. The load transfer parameter of a single pile in nonhomogeneous soils is derived from the displacement influence factor obtained from Mindlin's solution for an elastic continuum analysis, without using the conventional form of the load transfer parameter adopting the maximum radius of the influence of the pile proposed by Randolph and Wroth. The modulus of the subgrade reaction along the pile in nonhomogeneous soils is expressed by using the displacement influence factor related to Mindlin's equation for an elastic continuum analysis to combine the elastic continuum approach with the subgrade reaction approach. The relationship between settlement and vertical load for a single pile in nonhomogeneous soils is obtained by using the recurrence equation for each layer. Using the modulus of the subgrade reaction represented by the displacement influence factor related to Mindlin's solution for the lateral load, the relationship between horizontal displacement, rotation, moment, and shear force for a single pile subjected to lateral loads in nonhomogeneous soils is available in the form of the recurrence equation. The comparison of the results calculated by the present method for single piles and pile groups in nonhomogeneous soils has shown good agreement with those obtained from the more rigorous finite element and boundary element methods. It is found that the present procedure gives a good prediction on the behavior of piles in nonhomogeneous soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The capability of a bounding surface plasticity model with a vanishing elastic region to capture the multiaxial dynamic hysteretic responses of soil deposits under broadband (eg, earthquake) excitations is explored by using data from centrifuge tests. The said model was proposed by Borja and Amies in 1994 (J. Geotech. Eng., 120, 6, 1051‐1070), which is theoretically capable of representing nonlinear soil behavior in a multiaxial setting. This is an important capability that is required for exploring and quantifying site topography, soil stratigraphy, and kinematic effects in ground motion and soil‐structure interaction analyses. Results obtained herein indicate that the model can accurately predict key response data recorded during centrifuge tests on embedded specimens—including soil pressures and bending strains for structural walls, structures' racking displacements, and surface settlements—under both low‐ and high‐amplitude seismic input motions, which was achieved after performing only a basic material parameter calibration procedure. Comparisons are also made with results obtained using equivalent linear models and a well‐known pressure‐dependent multisurface plasticity model, which suggested that the present model is generally more accurate. The numerical convergence behavior of the model in nonlinear equilibrium iterations is also explored for a variety of numerical implementation and model parameter options. To facilitate broader use by researchers and practicing engineers alike, the model is implemented as a “user material” in ABAQUS Standard for implicit time stepping.  相似文献   

17.
An analytical approach using a Winkler model is investigated to provide analytical solutions of settlement of a rectangular pile subjected to vertical loads in nonhomogeneous soils. For a vertically loaded pile with a rectangular cross section, the settlement influence factor of a normal pile in nonhomogeneous soils is derived from Mindlin's solution for elastic continuum analysis. For short piles with rectangular and circular cross sections, the modified forms of settlement influence factors of normal piles are produced taking into account the load transfer parameter proposed by Randolph for short circular piles. The modulus of subgrade reaction along a rectangular pile in nonhomogeneous soils is expressed by using the settlement influence factor related to Mindlin's solution to combine the elastic continuum approach with the subgrade‐reaction approach. The relationship between settlement and vertical load for a rectangular pile in nonhomogeneous soils is available in the form of the recurrence equation. The formulation of settlement of soils surrounding a rectangular pile subjected to vertical loads in nonhomogeneous soils is proposed by taking into account Mindlin's solution and both the equivalent thickness and the equivalent elastic modulus for layers in the equivalent elastic method. The difference of settlement between square and circular piles is insignificant, and the settlement of a rectangular pile decreases as the aspect ratio of the rectangular pile cross section increases. The comparison of results calculated by the present method for a rectangular pile in nonhomogeneous soils has shown good agreement with those obtained from the analytical methods and the finite element method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Analytical solutions are derived for a three‐invariant Cam clay model subjected to proportional and circular drained loading histories. The solutions are presented for a specific volume, and volumetric and generalized shear strains. In the case of a proportional loading only straight effective stress paths are considered while in the case of a circular loading the maximum possible change in Lode's angle is π/3 due to plastic isotropy. Additionally, a concept of deviatoric stiffness is devised and an analytical expression for the generalized hardening modulus is derived. Qualitative and quantitative analyses are carried out in the form of direct comparisons between analytical solutions for drained and undrained loading histories thus offering an improved understanding of the three‐invariant model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
A modified three‐dimensional discontinuous deformation analysis (3D‐DDA) method is derived using four‐noded tetrahedral elements to improve the accuracy of current 3D‐DDA algorithm in practical applications. The analysis program for the modified 3D‐DDA method is developed in a C++ environment and its accuracy is illustrated through comparisons with several analytical solutions that are available for selected problems. The predicted solutions for these problems using the modified 3D‐DDA approach all show satisfactory agreement with the corresponding analytical results. Results presented in this paper demonstrate that the modified 3D‐DDA method with discontinuous modeling capabilities offers a useful computational tool to determine stresses and deformations in practical problems involving fissured elastic media with reasonable accuracy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Numerical models are commonly used to estimate excavation‐induced ground movements. Two‐dimensional (2D) plain strain assumption is typically used for the simulation of deep excavations which might not be suitable for excavations where three‐dimensional (3D) effects dominate the ground response. This paper adapts an inverse analysis algorithm to learn soil behavior from field measurements using a 3D model representation of an excavation. The paper describes numerical issues related to this development including the generation of the 3D model mesh from laser scan images of the excavation. The inverse analysis to extract the soil behavior in 3D is presented. The model captures the measured wall deflections. Although settlements were not sufficiently measured, the predicted settlements around the excavation site reflected strong 3D effects and were consistent with empirical correlations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号