首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Use of steady-state concentration measurements in geostatistical inversion
Authors:Ronnie L Schwede  Olaf A Cirpka
Institution:Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, 8600 Dübendorf, Switzerland
Abstract:In geostatistical inverse modeling, hydrogeological parameters, such as hydraulic conductivity, are estimated as spatial fields. Upon discretization this results in several thousand (log-)hydraulic conductivity values to be estimated. Common inversion schemes rely on gradient-based parameter estimation methods which require the sensitivity of all measurements with respect to all parameters. Point-like measurements of steady-state concentration in aquifers are generally not well suited for gradient-based methods, because typical plumes exhibit only a very narrow fringe at which the concentration decreases from a maximal value to zero. Only here the sensitivity of concentration with respect to hydraulic conductivity significantly differs from zero. Thus, if point-like measurements of steady-state concentration do not lie in this narrow fringe, their sensitivity with respect to hydraulic conductivity is zero. Observations of concentrations averaged over a larger control volume, by contrast, show a more regular sensitivity pattern. We thus suggest artificially increasing the sampling volume of steady-state concentration measurements for the evaluation of sensitivities in early stages of an iterative parameter estimation scheme. We present criteria for the extent of artificially increasing the sampling volume and for decreasing it when the simulation results converge to the measurements. By this procedure, we achieve high stability in geostatistical inversion of steady-state concentration measurements. The uncertainty of the estimated parameter fields is evaluated by generating conditional realizations.
Keywords:Groundwater  Steady-state concentration  Inverse modeling  Bayesian inference  Sensitivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号