首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
地球物理   1篇
地质学   5篇
  2012年   1篇
  2005年   1篇
  2003年   3篇
  1997年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
大别山及苏鲁地区微粒金刚石分类及其大地构造意义   总被引:3,自引:1,他引:3  
1992年发现大别山首例微粒金刚石之后,又于2003年和2004年在大别山和苏鲁地区的榴辉岩薄片中和榴辉岩的人工重砂中发现了微粒金刚石。本文报道其中尚未发表的7颗,并对2颗较大的薄片中的微粒金刚石和2颗自由晶体金刚石进行拉曼光谱和红外光谱测试。研究结果表明,本区所有微粒金刚石都为IaA和IaB型金刚石的混合体。缺少Ib型金刚石,表明没有人造金刚石的混入。薄片中的金刚石大部分为石榴子石的包裹体,少数产出于颗粒之间,直径为30-180μm。自由颗粒微粒金刚石直径为400-700μm。在大别山北部,不但又一次找到了微粒金刚石,还在石榴子石中发现有单斜辉石、磷灰石和金红石的出溶。这表明北大剐不但是超高压地质体,而且可能是本区俯冲最深的地质体。  相似文献   
2.
A focused ion beam of Ga ions is a relatively new technique that has been developed for microelectronic industries. Now researchers of the Earth sciences find it to be a promising tool for studying various geological materials. Using the FIB technique and an FEI Strata DB 235 dual beam system, we have successfully prepared several electron-transparent foils, which crossed μm-sized diamonds included in host minerals such as zircon and garnet from quartzofeldspathic rocks of the Saxonian Erzgebirge, Germany. Scanning and transmission electron microscopy applied to these foils revealed that the diamonds contain crystalline nanometric inclusions. These inclusions consist of minerals of known stoichiometries such as SiO2 and Al2SiO5, whereas others are characterized by different combinations of Si, K, P, Ti, and Fe in the presence of oxygen (stoichiometries are not clear at this stage of research). One suite of inclusions is assumed to be represented by archerite, KH2PO4, which is known to be stable at pressures of 4–22 GPa, and one nanocrystal containing Pb, oxygen and carbon is interpreted to be PbxOy or PbCO3. Along with solid crystalline inclusions, the diamonds contain cavities filled by liquid/gas that escaped during sample preparation. These are associated with dislocations of diamond growth. Our data are consistent with the concept of diamond crystallization from a COH-rich multicomponent supercritical fluid and suggest that the composition of such a fluid is more consistent with a local crustal source rather than that of a mantle origin.  相似文献   
3.
The abundance and morphology of microdiamond in dolomite marble from Kumdy‐kol in the Kokchetav Massif, are unusual; a previous study estimated the maximum content of diamonds in dolomite marble to be about 2700 carat ton?1. Microdiamond is included primarily in garnet, and occasionally in diopside and phlogopite pseudomorphs after garnet. They are classified into three types on the basis of their morphology: (1) S‐type: star‐shaped diamond consisting of translucent cores and transparent subhedral to euhedral very fine‐grained outer parts; (2) R‐type: translucent crystals with rugged surfaces; and (3) T‐type: transparent, very fine‐grained crystals. The S‐type is the most abundant. Micro‐Laue diffraction using a 1.6‐µm X‐ray beam‐size demonstrated that the cores of the star‐shaped microdiamond represent single crystals. In contrast, the most fine‐grained outer parts usually have different orientations compared to the core. Laser–Raman studies indicate that the FWHM (Full Width at Half Maximum) of the Raman band of the core of the S‐type diamond is slightly larger than that for the outer parts. Differences in morphology, crystal orientations, and in the FWHM of the Raman band between the core and the fine‐grained outer‐parts of S‐type microdiamond suggest that the star‐shaped microdiamond was formed discontinuously in two distinct stages.  相似文献   
4.
超高压变质岩中微粒金刚石的发现及其动力学意义   总被引:1,自引:0,他引:1  
王强  焦述强 《世界地质》1997,16(1):23-29
概述了目前仅有的几个发现微粒金刚石的地区如哈萨克斯坦,挪威西部和我国中等部地的超高压变质岩的最新研究成果,并指出这些变质岩中微粒金刚石为变质成因,变质流体对微粒金刚石的形成具有十分重要的意义。  相似文献   
5.
Nanometric solid inclusions in diamond incorporated in garnet and zircon from felsic gneiss of the Kokchetav massif, Kazakhstan, have been examined utilizing electron microscopy and focused ion beam techniques. Host garnet and zircon contain numerous pockets of multiple inclusions, which consist of 1–3 diamond crystals intergrown with quartz, phengite, phlogopite, albite, K‐feldspar, rutile, apatite, titanite, biotite, chlorite and graphite in various combinations. Recalculation of the average chemical composition of the entrapped fluid represented by multiple inclusion pockets indicates that such fluid contained a low wt% of SiO2, suggesting a relatively low‐temperature fluid rather than a melt. Transmission electron microscopy revealed that the diamond contains abundant nanocrystalline inclusions of oxides, rare carbonates and silicates. Within the 15 diamond crystals studied, abundant inclusions were found of SiO2, TiO2, FexOy, Cr2O3, ZrSiO4, and single grains of ThxOy, BaSO4, MgCO3, FeCr2O4 and a stoichiometric Fe‐rich pyroxene. The diversity of trace elements within inclusions of essentially the same stoichiometry suggests that the Kokchetav diamond crystallized from a fluid containing variable amounts of Si, Fe, Ti, Cr, Zr, Ba, Mg and Th and other minor components such as K, Na, P, S, Pb, Zn, Nb, Al, Ca, Cl. Most of the components in crystals included in diamond appear to have their origin in the subducted metasediments, but some of them probably originate from the mantle. It is concluded that Kokchetav diamond most likely crystallized from a COH‐rich multicomponent supercritical fluid at a relatively low temperature (hence the apparently low content of rock‐forming elements), and that the diversity of major and minor components suggests interactions between subducted metasediments and mantle components.  相似文献   
6.
We analysed isotopic compositions of metamorphic microdiamond secondary ion mass spectrometry. Typical microdiamonds in this dolomite marble show star-shaped morphologies (S-type) consisting of single-crystal cores and polycrystalline rims. Four S-type microdiamonds and two R-type microdiamonds (single crystals with rugged surfaces) were analysed using a 5 μm diameter ion beam. S-type microdiamonds have heterogeneous carbon isotopic compositions even in a single grain. Analysis of a typical S-type microdiamond (no. xx01-1-13) revealed clear difference in δ13C between core and rim. The rim shows lighter isotopic compositions ranging from??17.2‰ to??26.9‰, whereas the core is much heavier, with δ13C ranging from??9.3‰ to??13.0‰. The δ13C values of R-type microdiamonds fall into narrow ranges from??8.3‰ to??14.9‰ for no. xx01-1-10 and from??8.3‰ to??15.3‰ for no. xx01-1-16. These δ13C values are similar to those of the S-type microdiamond cores. The R-type probably formed at the same stage as the core of the S-type, whereas rim growth at a second stage did not occur or occurred very weakly in R-type microdiamonds. These carbon isotopic data support the two-stage growth of microdiamonds in the Kokchetav ultrahigh-pressure host rock. To explain the second stage growth of S-type microdiamonds, we postulate a simple fluid infiltration of light carbon from neighbouring gneisses into the dolomite marble.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号