首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   661篇
  免费   20篇
  国内免费   1篇
地球物理   89篇
地质学   1篇
天文学   592篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   8篇
  2013年   21篇
  2012年   8篇
  2011年   9篇
  2010年   23篇
  2009年   58篇
  2008年   60篇
  2007年   78篇
  2006年   52篇
  2005年   54篇
  2004年   40篇
  2003年   37篇
  2002年   30篇
  2001年   24篇
  2000年   38篇
  1999年   36篇
  1998年   47篇
  1997年   8篇
  1996年   9篇
  1995年   6篇
  1994年   6篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
排序方式: 共有682条查询结果,搜索用时 31 毫秒
1.
2.
本文对Osherovich的黑子返回磁通量模型作了适当的修改,使用黑子中心作为边界条件,用五种观测结果,导出了理论模型所需的五个主要参量,用半经验方法求得了黑子静力学模型的磁场、压力和温度等物理量.将此模型应用于一个中等大小的圆形对称黑子,可得到一个特解,结果发现我们的模型既能满足黑子的磁性质,同时又能满足合理的热力学量分布.  相似文献   
3.
An approximate Riemann solver for the equations of relativistic magnetohydrodynamics (RMHD) is derived. The Harten–Lax–van Leer contact wave (HLLC) solver, originally developed by Toro, Spruce and Spears, generalizes the algorithm described in a previous paper to the case where magnetic fields are present. The solution to the Riemann problem is approximated by two constant states bounded by two fast shocks and separated by a tangential wave. The scheme is Jacobian-free, in the sense that it avoids the expensive characteristic decomposition of the RMHD equations and it improves over the HLL scheme by restoring the missing contact wave.
Multidimensional integration proceeds via the single step, corner transport upwind (CTU) method of Colella, combined with the constrained transport (CT) algorithm to preserve divergence-free magnetic fields. The resulting numerical scheme is simple to implement, efficient and suitable for a general equation of state. The robustness of the new algorithm is validated against one- and two-dimensional numerical test problems.  相似文献   
4.
A model of protostar formation under two current carrying gas filaments collision is presented. The model implies MHD approach involving self-gravity and radiative cooling effects. We suppose that through the current carrying gas filament collision a magnetic field reconnection takes place. Using an appropriate self-consistent presentation for time and special dependences of physical quantities in MHD equations, we derive the full set of equations that describes time evolution of the physical quantities just after an occurrence of magnetic field reconnection. Numerical simulations reveal that the process consists of three main phases of evolution. The first is an appearance of preceding peaks in time profiles of density and temperature following by the next phase of depression of both temperature and density and the final fast condensation phase with either cooling or heating of matter depending on initial parameters of problem. Effects of initial conditions like as magnetic field strength, current strength, initial gravity energy, cooling time and a geometry of collision are investigated. Main conclusion is that protostar formation takes place within the time interval less than one free fall time and it is preceded by the appearance of dense and hot matter with lifetime much less than free fall time. The final temperature of the protostar depends on the physical conditions and mainly on the ratio between free fall time and cooling time in the colliding current carrying gas filaments.  相似文献   
5.
Motivated by recent high-resolution observations of the solar surface, we investigate the problem of non-linear magnetoconvection in a three-dimensional compressible layer. We present results from a set of numerical simulations which model the situation in which there is a weak imposed magnetic field. This weak-field regime is characterized by vigorous granular convection and spatially intermittent magnetic field structures. When the imposed field is very weak, magnetic flux tends to accumulate at the edges of the convective cells, where it forms compact, almost 'point-like' structures which are reminiscent of those observed in the quiet Sun. If the imposed field is slightly stronger, there is a tendency for magnetic flux to become concentrated into 'ribbon-like' structures which are comparable to those observed in solar plages. The dependence of these simulations upon the strength of the imposed magnetic field is analysed in detail, and the concept of the fractal dimension is used to make a further, more quantitative comparison between these simulations and photospheric observations.  相似文献   
6.
On September 14–18, 2000, a medium-small solar active region was observed at Ganyu Station of Purple Mountain Observatory. Its spots were not large, but it had a peculiar active filament. On Sep.16, a flare of importance IIIb with rather intense geophysical effects was produced. Our computation of the magnetic structure of the active region reveals that the rope-shaped filament was concerned with a low magnetic arc close to magnetic neutral line. An intense shear of magnetic field occurred near magnetic rope. The QSL analysis shows that a 3-D magnetic reconnection might appear in the vicinity of filament, and this can be used to interpret the formation of a large flare.  相似文献   
7.
8.
9.
It is pointed out that simple models adopted so far have tended to neglect the obliquity of the magnetic field lines entering the Earths surface. A simple alternative model is presented, in which the ambient field lines are straight, but enter wedge shaped boundaries at half a right-angle. The model is illustrated by assuming an axially symmetric, compressional, impulse type disturbance at the outer boundary, all other boundaries being assumed to be perfectly conducting. The numerical method used is checked from the instant the excitation ceases, by an analytical method. The first harmonic along field lines is found to be of noticeable size, but appears to be mainly due to coupling with the fundamental, and with the first harmonic across field lines.  相似文献   
10.
磁重联被认为是太阳耀斑的产生机制,本文数值模拟在日冕中发生在磁重联过程,结果表明耀斑环的表观运动是磁重联的自洽结果;由重联点发出的慢激波对耀斑环的加热有贡献;耀斑环的上升并不意味着重联点的上升。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号