首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
本文对恒星黑子的观测方法和结果作了综合评述。介绍了恒星黑子温度的多色测光测定方法;黑子大小,温度和分布情况的测光畸变波黑子模型解,和高信噪比谱线轮廓多普勒成像方法;以及黑子寿命观测统计方法等的基本原理和研究进展。对已取得的有关恒星黑子的观测分析结果作了概括,与太阳典型黑子情况作了对比,并对恒星黑子的巨黑子,极区黑子以及长寿命黑子特殊性作了讨论,对需要进一步观测研究的问题作了总结。  相似文献   

2.
太阳黑子是太阳活动最明显的标志之一,近一个世纪来对太阳黑子的观测,积累了大量的黑子磁场和热力学量的资料,提出了许多黑子的模型。本文介绍了黑子的观测经验模型以及三种有用的磁流体静力学理论模型,即无力场模型、ST模型和RF模型,用静力学理论去解释黑子的一些现象,如黑子本影和半影界面及半景和光球分界面,而不讨论它的动力学模型,着重探讨了这些模型的定量性质,总结了它们的发展历史和研究进展。最后简要地指出了今后的一些研究设想。  相似文献   

3.
本文用非线性动力系统理论探讨了现代太阳周(1850年1月─1992年5月)黑子相对数月平均变化过程的可预报性。用时间延迟方法重构吸引子,计算它的最大Lyapunov指数(λ_1=0.023±0.004bits/月),估算了用这些黑子数进行确定性预报的理论时限(t=3.6±0.6年).结果表明,动力系统的可预报性与它的最大Lyapunov指数有直接关系,黑子数月平均变化过程的演化不是周期的,也不是拟周期的,而是混沌的。即使今后找到了描述该过程的确定性方程,它的长期行为也不可能准确地预报,只能作短期预报,这是黑子数本身的混沌特性决定的。用于黑子数预报的纯粹数值统计方法仅对短期预报才有效。  相似文献   

4.
太阳黑子数月平均变化的长期行为的可预报性   总被引:2,自引:0,他引:2  
本用非线性动力系统理论探讨了现代太阳周(1850年1月-1992年5月)黑子相对数月平均变化过程的可预报性。用时间延迟方法重构吸引子,计算它的最大Lyapunov指数(λ1=0.023±0.004 bits/月),估算了用这些黑子数进行确定性预报的理论时限(t=3.6±0.6年)。结果表明,动力系统的可预报性与它的最大Lyapunov指数有直接关系,黑子数月平均变化过程的演化不是周期的,也不是拟  相似文献   

5.
刘庆忠  胡福民 《天文学报》1995,36(3):294-300,T001
本文分析了NOAA6361活动区中的一些现象,发现该活动区在衰亡阶段经历了两次同极性黑子的复合过程,复合后的黑子本影间均有光桥存在,观测结果倾向于支持Parker1979年提出的黑子多磁流管模型。14日复合后的黑子本影还顺时针方向旋转了约70度角,从半影纤维的同样顺时针旋转可以认为:该黑子的半影磁场并非是普遍认为的简单的本影磁场的发散部分。我们还观测到另外两个比较有趣的现象:①δ黑子中的p极性黑子  相似文献   

6.
本文用云南天文台黑子目视观测资料,作出了黑子的纬度分布图。从对十九、二十、二十一太阳活动周大面积黑子的纬度分布统计中,得出了和黑子周期有关的一些有意义的结果。  相似文献   

7.
黑子数用国际系统RI作标准,与云南天文台RY、国内联合RL比较,分别求出总平均值:q(Y)=0.93004±0.00472,q(L)=0.91409±0.00444。这是后者删除“偶然误差”次数多于前者的结果。对国内联合数据的处理,应以一个观测点为准,以此归算作补充的部分数据,才有可能使数据系列保持相对的稳定  相似文献   

8.
本文用云南天文台在第22周太阳活动峰年期间拍摄到的大太阳黑子群照相资料,太阳黑子目视描述资料,以及Nimbus—7卫星上辐射计测量的太阳总辐照度,分别计算了太阳总辐射照度与大黑子群的本影视面积,大黑子群全群视面积和日面上全部黑子的总视面积的相关系数。结果表明,太阳总辐射照度与这三种视面积均存在强的负相关。其中与大黑子群本影视面积的相关最强,其次是与全群视面积的相关,最后是与日面上全部黑子的总视面积的相关。并对以上结果和其它有关结果进行了分析和讨论。  相似文献   

9.
本文研究结果表明:同一黑子群在日面期间的顺或反时针方向的旋转运动会先后并存.质子耀斑前1~2无,黑子群的旋转角速度达到极大.耀斑后,磁绳的松弛,黑子群可能会反向旋转,强的剪切过程和质子耀斑可能会再度出现.强质子耀斑活动区的共同特征是:(1)形态为单个团状结构δ型黑子,即众多异极性本影核紧锁在同一黑子半影中;(2)黑子面积>1000×10-6半球面积,日面跨度>10°;(3)黑子群都有快速的旋转运动.这类活动区,如果在日面西部活动性明显地增强,那么这个活动区在未来转到日面边缘及其背后、或再次从日面东边缘转出时,定能再次爆发耀斑和伴随较强质子事件。  相似文献   

10.
本文对21周黑子活动区作空间分布的统计分析,得到如下结果:(1)存在三个活动经度带,它们是340°—320°,300°—240°和220°—100°。 (2)黑子活动区在南北半球上分布是不均匀的。(3)用自相关方法作黑子活动区的空间谱分布,结果表明:一个黑子活动区在第一次回转时又产生黑子活动区的可能性是很大的。  相似文献   

11.
In this work, some solutions of magnetohydrodynamic (MHD) equations are searched in order to investigate some large scale physical quantities in the sunspot dominated latitudinal regions near the equatorial plane. Special separation of variables is used to obtain the radial and latitudinal changes in spherical coordinates. Present parametric analysis yields three important parameters which are the sphericity, density and radial components shape parameters in the latitudinal distributions of physical variables. In the region of interest there is a considerable change in physical quantities with respect to regions where sunspots do not appear.  相似文献   

12.
The properties of small (< 2″) moving magnetic features near certain sunspots are studied with several time series of longitudinal magnetograms and Hα filtergrams. We find that the moving magnetic features:
  1. Are associated only with decaying sunspots surrounded entirely or in part by a zone without a permanent vertical magnetic field.
  2. Appear first at or slightly beyond the outer edge of the parent sunspot regardless of the presence or absence of a penumbra.
  3. Move approximately radially outward from sunspots at about 1 km s?1 until they vanish or reach the network.
  4. Appear with both magnetic polarities from sunspots of single polarities but appear with a net flux of the same sign as the parent sunspot.
  5. Transport net flux away from the parent sunspots at the same rates as the flux decay of the sunspots.
  6. Tend to appear in opposite polarity pairs.
  7. Appear to carry a total flux away from sunspots several times larger than the total flux of the sunspots.
  8. Produce only a very faint emmission in the core of Hα.
A model to help understand the observations is proposed.  相似文献   

13.
As a first step in constructing three-dimensional decaying sunspot models we select the relevant observational data. From these we conclude:
  1. sunspots, except the smallest, obey a radial and evolutionary similarity;
  2. sunspots may be considered as isolated, fairly well defined flux tubes, wrapped in thin current sheets;
  3. a substantial number among stable regular spots show a phase of slowest decay whose rate is independent of the spot's area.
Arguments are given that the slowest rate of decay is ultimately determined by Ohmic dissipation in the inner part of the current sheet. Preliminary asymptotic models for the deep layers (deeper than 2000 km below the photosphere) are given which satisfy the above three constraints. To meet the observed rate of slowest decay the current sheet has to be very thin, about 10?5 to 10?4 times the umbral radius. Radial large-scale fluid motions are required in the current sheet to maintain the similarity of the structure. The radial motions are linked with the vertical motions which may be connected with the Evershed flow. Finally we discuss details which are less relevant in the large-scale structure of stable sunspots, such as fine structures, twists, the break-down of the similarity and the relation between sunspots and smaller magnetic structures, and the intrinsic scatter in some observed quantities.  相似文献   

14.
As shown by statistical results, in the 23rd solar activity cycle the variation of the latitudes of rotating sunspots with time exhibits a butterfly pattern. We have studied the variations with phase for the mean square errors among the 4 fitting curves of the 2 wings of the butterfly diagram of sunspots and the 2 wings of the butterfly diagram of rotating sunspots in the 23rd solar activity cycle. The results show that a systematic time delay exists not only between the northern and southern hemispheres of the butterfly diagram of sunspots, but also between the northern and southern hemispheres of the butterfly diagram of rotating sunspots, even between the butterfly diagrams of the sunspots and rotating sunspots in the same hemisphere. This means that the 23rd-cycle sunspot activities in the northern and southern hemispheres happened not simultaneously, that a systematic time delay or advance (phase difference) exists between the northern and southern hemispheres, that the southern hemisphere lags behind the northern hemisphere, that a phase difference exists between the butterfly diagram of rotating sunspots and the butterfly diagram of sunspots in the 23rd cycle, and that the butterfly diagram of rotating sunspots lags behind that of sunspots. The observed delay is a little less than the theoretical value predicted by the dynamo model.  相似文献   

15.
We assume the large-scale diffuse magnetic field of the Sun to originate from the poloidal component of a dynamo operating at the base of the convection zone, whereas the sunspots are due to the toroidal component. The evolution of the poloidal component is studied to model the poleward migration of the diffuse field seen on the solar surface and the polar reversal at the time of sunspots maxima (Dikpati and Choudhuri 1994, 1995).  相似文献   

16.
We suggest a quantitative sunspot model developed in terms of mean-field magnetohydrodynamics (MHD). The model consistently describes the distributions of magnetic field, fluid velocity, and thermodynamic parameters in a sunspot and the surrounding matter. Two versions of the model allow the MHD equilibrium in sunspots and their slow decay to be analyzed. The baroclinic flow converging to the sunspot plays an important role in the equilibrium. Several calculated characteristics—almost uniform distributions of brightness and magnetic field inside sunspots, their abrupt changes at the boundary, and nearly linear decreases in the area and magnetic flux of decaying sunspots with time—qualitatively agree with the observations.  相似文献   

17.
While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this article, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out a helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by Gizon et al. (2009a, 2009b). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.  相似文献   

18.
Observations of the scattering of acoustic waves by sunspots show a substantial deficit in scattered power relative to incident power. A number of calculations have attempted to model this process in terms of absorption at the magnetohydrodynamic Alfvén resonance. The results presented here extend these calculations to the case of a highly structured axisymmetric translationally invariant flux-tube embedded in a uniform atmosphere. The fractional energy absorbed is calculated for models corresponding to flux-tubes of varying radius, mean flux-density and location below the photosphere. The effects of twist are also included.It is found that absorption can be very efficient even in models with low mean magnetic flux density, provided the flux is concentrated into intense slender annuli. Twist is found to increase the range of wave numbers over which absorption is efficient, but it does not remove the low absorption at low azimuthal orders which is a feature of resonance absorption calculations in axisymmetric geometry, and which is in conflict with observation.These results suggest that resonance absorption could be an efficient mechanism in plage fields and fibril sunspots as well as in monolithic sunspots. At present it is too early to make any definite deductions about sunspot structure from the observations, but the possible future use of sunspot seismology to resolve open questions in the theory of sunspots is briefly discussed.  相似文献   

19.
Ilgin Seker 《Solar physics》2013,286(2):303-314
We study whether the birthplaces of sunspots (defined as the location of first appearance in the photosphere) are related to the planetary tides on the Sun. The heliocentric longitudes of newly emerging sunspots are statistically compared to the longitudes of tidal peaks caused by the tidal planets Mercury, Venus, Earth, and Jupiter. The longitude differences between new sunspots and tidal planets (and their conjugate locations) as well as the magnitudes of the vertical and horizontal tidal forces at the birthplace of new sunspots are calculated. The statistical distributions are compared with simulation results calculated using a random sunspot distribution. The results suggest that the birthplaces of sunspots (in the photosphere) are independent of the positions of tidal planets and the strength of tidal forces caused by them. However, since the sunspots actually originate near the tachocline (well below the photosphere) and it takes considerable time for the disturbances to reach photosphere, we hesitate to conclude that the formation of sunspots are not related to planetary positions.  相似文献   

20.
The latitudinal migration of sunspots toward the equator,which implies there is propagation of the toroidal magnetic flux wave at the base of the solar convection zone,is one of the crucial observational bases for the solar dynamo to generate a magnetic field by shearing of the pre-existing poloidal magnetic field through differential rotation.The Extended time series of Solar Activity Indices(ESAI)elongated the Greenwich observation record of sunspots by several decades in the past.In this study,ESAI's yearly mean latitude of sunspots in the northern and southern hemispheres during the years 1854 to 1985 is utilized to statistically test whether hemispherical latitudinal migration of sunspots in a solar cycle is linear or nonlinear.It is found that a quadratic function is statistically significantly better at describing hemispherical latitudinal migration of sunspots in a solar cycle than a linear function.In addition,the latitude migration velocity of sunspots in a solar cycle decreases as the cycle progresses,providing a particular constraint for solar dynamo models.Indeed,the butterfly wing pattern with a faster latitudinal migration rate should present stronger solar activity with a shorter cycle period,and it is located at higher latitudinal position,giving evidence to support the Babcock-Leighton dynamo mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号