首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   11篇
  国内免费   1篇
地球物理   10篇
地质学   55篇
海洋学   4篇
综合类   1篇
自然地理   14篇
  2020年   8篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   6篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   6篇
  2004年   5篇
  2003年   4篇
  2000年   1篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
排序方式: 共有84条查询结果,搜索用时 31 毫秒
1.
An anisotropic fractured poroelastic effective medium theory   总被引:1,自引:0,他引:1  
  相似文献   
2.
3.
4.
Drying of deformable porous media results in their shrinkage, and it may cause cracking provided that shrinkage deformations are hindered by kinematic constraints. This is the motivation to develop a thermodynamics‐based microporoelasticity model for the assessment of cracking risk in partially saturated porous geomaterials. The study refers to 3D representative volume elements of porous media, including a two‐scale double‐porosity material with a pore network comprising (at the mesoscale) 3D mesocracks in the form of oblate spheroids, and (at the microscale) spherical micropores of different sizes. Surface tensions prevailing in all interfaces between solid, liquid, and gaseous matters are taken into account. To establish a thermodynamics‐based crack propagation criterion for a two‐scale double‐porosity material, the potential energy of the solid is derived, accounting—in particular—for mesocrack geometry changes (main original contribution) and for effective micropore pressures, which depend (due to surface tensions) on the pore radius. Differentiating the potential energy with respect to crack density parameter yields the thermodynamical driving force for crack propagation, which is shown to be governed by an effective macrostrain. It is found that drying‐related stresses in partially saturated mesocracks reduce the cracking risk. The drying‐related effective underpressures in spherical micropores, in turn, result in a tensile eigenstress of the matrix in which the mesocracks are embedded. This way, micropores increase the mesocracking risk. Model application to the assessment of cracking risk during drying of argillite is the topic of the companion paper (Part II). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
5.
An exact steady‐state closed‐form solution is presented for coupled flow and deformation of an axisymmetric isotropic homogeneous fluid‐saturated poroelastic layer with a finite radius due to a point sink. The hydromechanical behavior of the poroelastic layer is governed by Biot's consolidation theory. Boundary conditions on the lateral surface are specifically chosen to match the appropriate finite Hankel transforms and simplify the transforms of the governing equations. Ordinary differential equations in the transformed domain are solved, and then the analytical solutions in the physical space for the pore pressure and the displacements are finally obtained by using finite Hankel inversions. The analytical solutions at some special locations such as the top and bottom surfaces, lateral surface, and the symmetrical axis are given and analyzed. And a case study for the consolidation of a water‐saturated soft clay layer due to pumping is conducted. The analytical solution is verified against the finite element solution. Meanwhile, an analysis of coupled hydromechanical behavior is carried out herein. The presented analytical solution is an exact solution to the practical poroelastic problem within an axisymmetric finite layer. It can provide us a better understanding of the poroelastic behavior of the finite layer due to fluid extraction. Besides, it can be applied to calibrate numerical schemes of axisymmetric poroelasticity within finite domains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
6.
This paper uses Biot's poroelasticity approach to examine the consolidation behaviour of a rigid foundation with a frictionless base in contact with a poroelastic halfspace. The mathematical development of the mixed boundary value problem involves a set of dual integral equations in the Laplace transform domain which cannot be conveniently solved by employing conventional procedures. In this paper, a numerical solution is developed using a scheme where the contact normal stress is approximated by a discretized equivalent. The influence of limiting drainage boundary conditions at the entire surface of the halfspace on the degree of consolidation of the rigid circular foundation is investigated. The results obtained in this study are compared with the corresponding results given in the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
7.
The aim of this paper is to analyse the performance of a finite element formulation usable for predicting the mechanical consequences of frost effects on porous media. It considers the characteristics of porous media and how the frost action can be assessed. The problem is then separated into two parts: thermal and poromechanical calculations. The constitutive equations developed in the framework of poromechanics are presented and the implementation in a usual finite element poroelasticity formulation based on Zuber's method is adopted. An analysis of the time‐step influence on the convergence rate is given and leads us to propose a simple method in order to obtain objectivity of the finite element response and avoid over‐long calculations. Frost effect simulations are carried out on real porous media (two fired clays) as a case study. Although the experimental behaviour of the porous media subjected to frost action is in accordance with some observations, the calculated strains appear to be overestimated compared with measurements. The problem could be largely attributable to the difficulty of assessing permeability evolution during frost development. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
8.
A simplified analytical method is presented for the vertical dynamic analysis of a rigid, massive, cylindrical foundation embedded in a poroelastic soil layer. The foundation is subjected to a time‐harmonic vertical loading and is perfectly bonded to the surrounding soil in the vertical direction. The soil underlying the foundation base is represented by a single‐layered poroelastic soil based on rigid bedrock while the soil at the side of the foundation is modeled as an independent poroelastic layer composed of a series of infinitesimally thin layers. The behavior of the soil is governed by Biot's poroelastodynamic theory and its governing equations are solved by the use of Hankel integral transform. The contact surface between the foundation base and the soil is smooth and fully permeable. The dynamic interaction problem is solved following standard numerical procedures. The accuracy of the present solution is verified by comparisons with the well‐known solutions obtained from other approaches for both the elastodynamic interaction problem and poroelastodynamic interaction problem. Numerical results for the vertical dynamic impedance and response factor of the foundation are presented to demonstrate the influence of nondimensional frequency of excitation, soil layer thickness, poroelastic material parameters, depth ratio and mass ratio on the dynamic response of a rigid foundation embedded in a poroelastic soil layer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
9.
Knowledge of shale poromechanical behavior is proven to be essential for various environmental issues such as deep geological storage of CO2, high level radioactive waste storage, oil field abandonment and so forth… This paper sets out the key points of shale experimental characterization within the framework of Biot's mechanics of fluid saturated porous solids. Shales are well known to present a more or less transverse isotropy. This paper describes a full methodology for ?dometric tests on such sensitive and weakly permeable material. To illustrate this methodology, measurements carried out on Tournemire argillite are proposed. A transverse isotropic poroelastic model is also used to give a more in depth understanding of the hydromechanical coupling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
10.
Chemoporoelastic theory is an extension of classical Biot poroelasticity that accounts for coupling with the presence and the transport of ions in the pore fluid. The impact of this extra level of coupling can be both substantial and complex. This paper relies on the two variations of Mandel's classical problem, which has become a canonical illustration of the complexity that poromechanical coupling can bring to an otherwise straightforward system. To this end, solutions for a chemoporoelastic shale cylinder and a spherical shale ball are derived. These solutions are then used to demonstrate that chemoporoelastic coupling leads to a coupled pore pressure response that is not only non‐monotonic, as in Mandel's classical case, but also demonstrates the consequences of the semi‐permeable membrane‐like nature of the shale and of the problem's two diffusion‐related timescales. This paper concludes with a discussion of the implications of these results for experimentation and modeling of so‐called reactive shales using chemoporoelastic theory. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号