首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3815篇
  免费   504篇
  国内免费   600篇
测绘学   199篇
大气科学   64篇
地球物理   1019篇
地质学   2911篇
海洋学   91篇
天文学   2篇
综合类   214篇
自然地理   419篇
  2024年   5篇
  2023年   32篇
  2022年   99篇
  2021年   135篇
  2020年   118篇
  2019年   134篇
  2018年   125篇
  2017年   133篇
  2016年   142篇
  2015年   119篇
  2014年   187篇
  2013年   234篇
  2012年   194篇
  2011年   209篇
  2010年   192篇
  2009年   256篇
  2008年   300篇
  2007年   304篇
  2006年   281篇
  2005年   272篇
  2004年   238篇
  2003年   208篇
  2002年   145篇
  2001年   132篇
  2000年   144篇
  1999年   97篇
  1998年   76篇
  1997年   66篇
  1996年   77篇
  1995年   57篇
  1994年   43篇
  1993年   45篇
  1992年   33篇
  1991年   23篇
  1990年   15篇
  1989年   20篇
  1988年   14篇
  1987年   2篇
  1986年   2篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
排序方式: 共有4919条查询结果,搜索用时 578 毫秒
1.
高速滑坡问题是当前工程地质和环境地质学界极为关注的问题。本文对诸如滑体高速滑动所对应的时空界限、滑体滑动过程所产生的热效应以及空气浮托力等高速滑坡产生机制问题进行了初步探讨。  相似文献   
2.
Approach to Mountain Hazards in Tibet, China   总被引:1,自引:1,他引:0  
Tibet is located at the southwest boundary of China. It is the main body of the Qinghai-Tibet Plateau, the highest and the youngest plateau in the world. Owing to complicated geology, Neo-tectonic movements, geomorphology, climate and plateau environment, various mountain hazards, such as debris flow, flash flood, landslide, collapse, snow avalanche and snow drifts, are widely distributed along the Jinsha River (the upper reaches of the Yangtze River), the Nu River and the Lancang River in the east, and the Yarlungzangbo River, the Pumqu River and the Poiqu River in the south and southeast of Tibet. The distribution area of mountain hazards in Tibet is about 589,000 km^2, 49.3% of its total territory. In comparison to other mountain regions in China, mountain hazards in Tibet break out unexpectedly with tremendously large scale and endanger the traffic lines, cities and towns, farmland, grassland, mountain environment, and make more dangers to the neighboring countries, such as Nepal, India, Myanmar and Bhutan. To mitigate mountain hazards, some suggestions are proposed in this paper, such as strengthening scientific research, enhancing joint studies, hazards mitigation planning, hazards warning and forecasting, controlling the most disastrous hazards and forbidding unreasonable human exploring activities in mountain areas.  相似文献   
3.
本文首先简述了斜坡演化过程与构造运动的关系,然后阐明了滑坡的空间分布、活动周期及活动规模与构造因素的联系。在此基础上指出:构造因素是滑坡产生的基础,对滑坡分布具宏观控制作用,并与滑坡的活动周期和活动规模密切相关,是滑坡研究及其灾害预测、预防研究工作中值得重视的重要因素。  相似文献   
4.
We designed a new seismic source model for Italy to be used as an input for country-wide probabilistic seismic hazard assessment (PSHA) in the frame of the compilation of a new national reference map.

We started off by reviewing existing models available for Italy and for other European countries, then discussed the main open issues in the current practice of seismogenic zoning.

The new model, termed ZS9, is largely based on data collected in the past 10 years, including historical earthquakes and instrumental seismicity, active faults and their seismogenic potential, and seismotectonic evidence from recent earthquakes. This information allowed us to propose new interpretations for poorly understood areas where the new data are in conflict with assumptions made in designing the previous and widely used model ZS4.

ZS9 is made out of 36 zones where earthquakes with Mw > = 5 are expected. It also assumes that earthquakes with Mw up to 5 may occur anywhere outside the seismogenic zones, although the associated probability is rather low. Special care was taken to ensure that each zone sampled a large enough number of earthquakes so that we could compute reliable earthquake production rates.

Although it was drawn following criteria that are standard practice in PSHA, ZS9 is also innovative in that every zone is characterised also by its mean seismogenic depth (the depth of the crustal volume that will presumably release future earthquakes) and predominant focal mechanism (their most likely rupture mechanism). These properties were determined using instrumental data, and only in a limited number of cases we resorted to geologic constraints and expert judgment to cope with lack of data or conflicting indications. These attributes allow ZS9 to be used with more accurate regionalized depth-dependent attenuation relations, and are ultimately expected to increase significantly the reliability of seismic hazard estimates.  相似文献   

5.
An integrated GIS-based tool (GTIS) was constructed to estimate site effects related to the earthquake hazards in the Gyeongju area of Korea. To build the GTIS for the study area, intensive site investigations and geotechnical data collections were performed and a walk-over site survey was additionally carried out to acquire surface geo-knowledge data in accordance with the procedure developed to build the GTIS. For practical applications of the GTIS used to estimate the site effects associated with the amplification of ground motion, seismic microzoning maps of the characteristic site period and the mean shear wave velocity to a depth of 30 m were created and presented as a regional synthetic strategy addressing earthquake-induced hazards. Additionally, based on one-dimensional site response analyses, various seismic microzoning maps for short- and mid-period amplification potentials were created for the study area. Case studies of seismic microzonations in the Gyeongju area verified the usefulness of the GTIS for predicting seismic hazards in the region.  相似文献   
6.
This work deals with disposal of slurries generated during the cutting and polishing processes of slabs of decorative sedimentary carbonate rocks in the north western Sicily. At present, they are used as fillers of dismantled quarries near the sawmills and, as a final step of reclamation, are covered with earth layers. In spite of such inexpensive solution, there is lack of knowledge about the composition of the waste. In order to assess if there is any threat for the environment and to suggest indications for alternative solutions, such as recycling or inactivation processes, the slurries were analysed by XR diffraction, simultaneous thermal analysis, ICP/MS, ionic chromatography, FTIR, UV-Vis, COD and TOC measurements, grain size analysis. Results indicate that the slurries can threaten the groundwater, because of the high chemical oxygen demand; furthermore they can modify the mechanism of groundwater recharge, because of their grain size distribution. Some laboratory tests show that, even in very aggressive conditions, the solid pollutants persist in the waste and slowly release into water the products of their degradation. The slurry therefore should be subjected to inactivation treatment before disposal or, alternatively, recycled as secondary raw material for a suitable process.  相似文献   
7.
For the assessment of shallow landslides triggered by rainfall, the physically based model coupling the infinite slope stability analysis with the hydrological modeling in nearly saturated soil has commonly been used due to its simplicity. However, in that model the rainfall infiltration in unsaturated soil could not be reliably simulated because a linear diffusion-type Richards’ equation rather than the complete Richards’ equation was used. In addition, the effect of matric suction on the shear strength of soil was not actually considered. Therefore, except the shallow landslide in saturated soil due to groundwater table rise, the shallow landslide induced by the loss in unsaturated shear strength due to the dissipation of matric suction could not be reliably assessed. In this study, a physically based model capable of assessing shallow landslides in variably saturated soils is developed by adopting the complete Richards’ equation with the effect of slope angle in the rainfall infiltration modeling and using the extended Mohr–Coulomb failure criterion to describe the unsaturated shear strength in the soil failure modeling. The influence of rainfall intensity and duration on shallow landslide is investigated using the developed model. The result shows that the rainfall intensity and duration seem to have similar influence on shallow landslides respectively triggered by the increase of positive pore water pressure in saturated soil and induced by the dissipation of matric suction in unsaturated soil. The rainfall duration threshold decreases with the increase in rainfall intensity, but remains constant for large rainfall intensity.  相似文献   
8.
Jens-Uwe Klügel   《Earth》2008,88(1-2):1-32
The paper is dedicated to the review of methods of seismic hazard analysis currently in use, analyzing the strengths and weaknesses of different approaches. The review is performed from the perspective of a user of the results of seismic hazard analysis for different applications such as the design of critical and general (non-critical) civil infrastructures, technical and financial risk analysis. A set of criteria is developed for and applied to an objective assessment of the capabilities of different analysis methods. It is demonstrated that traditional probabilistic seismic hazard analysis (PSHA) methods have significant deficiencies, thus limiting their practical applications. These deficiencies have their roots in the use of inadequate probabilistic models and insufficient understanding of modern concepts of risk analysis, as have been revealed in some recent large scale studies. These deficiencies result in the lack of ability of a correct treatment of dependencies between physical parameters and finally, in an incorrect treatment of uncertainties. As a consequence, results of PSHA studies have been found to be unrealistic in comparison with empirical information from the real world. The attempt to compensate these problems by a systematic use of expert elicitation has, so far, not resulted in any improvement of the situation. It is also shown that scenario-earthquakes developed by disaggregation from the results of a traditional PSHA may not be conservative with respect to energy conservation and should not be used for the design of critical infrastructures without validation. Because the assessment of technical as well as of financial risks associated with potential damages of earthquakes need a risk analysis, current method is based on a probabilistic approach with its unsolved deficiencies.

Traditional deterministic or scenario-based seismic hazard analysis methods provide a reliable and in general robust design basis for applications such as the design of critical infrastructures, especially with systematic sensitivity analyses based on validated phenomenological models. Deterministic seismic hazard analysis incorporates uncertainties in the safety factors. These factors are derived from experience as well as from expert judgment. Deterministic methods associated with high safety factors may lead to too conservative results, especially if applied for generally short-lived civil structures. Scenarios used in deterministic seismic hazard analysis have a clear physical basis. They are related to seismic sources discovered by geological, geomorphologic, geodetic and seismological investigations or derived from historical references. Scenario-based methods can be expanded for risk analysis applications with an extended data analysis providing the frequency of seismic events. Such an extension provides a better informed risk model that is suitable for risk-informed decision making.  相似文献   

9.
Quantitative sinkhole hazard assessments in karst areas allow calculation of the potential sinkhole risk and the performance of cost-benefit analyses. These estimations are of practical interest for planning, engineering, and insurance purposes. The sinkhole hazard assessments should include two components: the probability of occurrence of sinkholes (sinkholes/km2 year) and the severity of the sinkholes, which mainly refers to the subsidence mechanisms (progressive passive bending or catastrophic collapse) and the size of the sinkholes at the time of formation; a critical engineering design parameter. This requires the compilation of an exhaustive database on recent sinkholes, including information on the: (1) location, (2) chronology (precise date or age range), (3) size, and (4) subsidence mechanisms and rate. This work presents a hazard assessment from an alluvial evaporite karst area (0.81 km2) located in the periphery of the city of Zaragoza (Ebro River valley, NE Spain). Five sinkholes and four locations with features attributable to karstic subsidence where identified in an initial investigation phase providing a preliminary probability of occurrence of 0.14 sinkholes/km2 year (11.34% in annual probability). A trenching program conducted in a subsequent investigation phase allowed us to rule out the four probable sinkholes, reducing the probability of occurrence to 0.079 sinkholes/km2 year (6.4% in annual probability). The information on the severity indicates that collapse sinkholes 10–15 m in diameter may occur in the area. A detailed study of the deposits and deformational structures exposed by trenching in one of the sinkholes allowed us to infer a modern collapse sinkhole approximately 12 m in diameter and with a vertical throw of 8 m. This collapse structure is superimposed on a subsidence sinkhole around 80 m across that records at least 1.7 m of synsedimentary subsidence. Trenching, in combination with dating techniques, is proposed as a useful methodology to elucidate the origin of depressions with uncertain diagnosis and to gather practical information with predictive utility about particular sinkholes in alluvial karst settings: precise location, subsidence mechanisms and magnitude, and timing and rate of the subsidence episodes.  相似文献   
10.
A detailed study was carried out on a piece of land that had been struck by lightning during the violent rainstorm that raged over the Island of S?o Miguel (Azores Archipelago) in late October 2006. Temperature and gas measurements (CO2, CO, H2S and CH4) were performed in four study trenches, dug in an area of ∼3 m2, where an underground fire had been initiated by the impact with a lightning stroke, followed by the emission of a column of gases and smoke. The soil under study was originally a well-pedogenized about 80 cm thick bed, made of volcanic clayey to silty tephra fallouts and contained 5.5–9.7% of organic matter. The underground fire was monitored for one week and revealed a peak release of 404 ppm CO and 3.4% CO2 originating from a horizon located about 45 cm under the soil surface. Measurements of temperature, performed one week after the impact, indicated a maximum value of 326°C inside the soil, while 516.5°C were measured on the surface of a lava block interred about 20 cm under the surface. Subsequently, a stratigraphic and sedimentologic study proved the role of the grain-size of the soil and of the organic matter content of the different horizons of the impact area, in determining the ratio between anoxic/oxidised combustion conditions and in the progress of the process itself. It was also noticed that combustion was not total all over in the soil bed and that the process had slightly migrated toward SW during the observation period. The combustion process went on for about ten days, in spite of several other violent rainstorms, until it was artificially extinguished through the excavations made to obtain study trenches. This particular circumstance evidenced the potential natural hazard represented by this kind of atmospheric event, especially in a land where the volcanic nature of the soil may easily mislead inexperienced observers and, consequently, delay proper action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号