首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   6篇
地质学   14篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2004年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有14条查询结果,搜索用时 109 毫秒
1.
磁海铁矿床地处塔里木盆地北缘北山成矿带内, 为一与镁铁-超镁铁岩有关的岩浆分异-矿浆贯入-热液交代型复成因铁矿床。对磁海矿区镁铁-超镁铁岩的岩石学特征和岩石地球化学特征等进行了较为系统的研究, 认为这套镁铁-超镁铁岩石属于铁质钙碱性玄武岩系列。稀土及微量元素特征与原始地幔成分接近,表明岩浆上升侵位过程中局部遭受陆壳混染。结合前人的研究成果, 认为该矿床形成于后碰撞拉张构造环境。原始岩浆的结晶分异和后期热液蚀变对磁海铁矿形成和富集起重要作用。  相似文献   
2.
黑柱石是一种不常见的夕卡岩标型矿物,本次研究在新疆磁海矿区首次发现黑柱石。本文对磁海矿区的黑柱石产出地质环境、矿物共生组合、化学成分、光学性质等进行了研究。化学成分均由电子探针分析求得,计算化学简式为Ca0.98(Fe1.72Mn0.07Mg0.11)1.902+(Fe0.95Al0.03)0.983+[Si2.00O7]O(OH)。磁海矿区黑柱石的形成与基性次火山热液活动有关,是一种特殊的退变质(蚀变)夕卡岩矿物;在成矿作用晚期,随着热液活动加强,早期夕卡岩矿物可退变质形成黑柱石。黑柱石形成时间较晚,对早期形成的磁铁矿起贫化作用。将磁海矿区黑柱石与国内外其它矿区黑柱石的化学成分进行了对比,认为磁海矿区黑柱石为普通黑柱石。黑柱石在常用的矿物中较少提及,应该引起重视。  相似文献   
3.
Diabase dykes in Cihai, Beishan region, NW China are spatially and temporally associated with ‘Cornwall-type’ iron deposits. U–Pb dating of zircons from a diabase dyke using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) yields an age of 128.5 ± 0.3 Ma, indicating an Early Cretaceous crystallization age. Most of the diabases show low Mg-numbers, suggesting evolved magmas. The diabase dykes show typical ophitic or sub-ophitic textures, and are dominantly composed of phenocrysts of plagioclase (40–50%) and clinopyroxene (30–45%), with minor and varying amounts of biotite and hornblende (1–5%), and minor disseminated magnetite (∼5%). Their mineralogy reflects magma differentiation under relatively low oxygen fugacity conditions. The diabase dykes are characterized by minor variation in SiO2 (44.67–49.76 wt.%) and MnO (0.14–0.26 wt.%), but show a marked range of Al2O3 (10.66–14.21 wt.%), total Fe2O3 (9.52–13.88 wt.%), TiO2 (0.66–2.82 wt.%) and relatively high MgO (4.87–9.29 wt.%) with an Mg# value [atomic Mg/(Mg + Fe2+)] of up to 66. The Cihai diabases possibly experienced fractional crystallization of olivine + clinopyroxene and minor crustal contamination during the differentiation process. Prominent negative Nb, Ta and Ti anomalies suggest derivation from subduction-modified mantle. Furthermore, the rocks have relatively unradiogenic Sr- and Nd-isotopic ratios. These characteristics probably reflect partial melting of a subduction component in the source mantle lithosphere through heat input from an upwelling asthenospheric mantle. Such processes probably occurred within an extensional setting during the Early Cretaceous in the Beishan area. The iron-rich fluids were derived from deep sources, and the iron ores were concentrated through a convection cell driven by temperature gradients established by the intrusion of the diabase sills. The combined processes of subduction-related enrichment in the source, shallow depth of emplacement, and the involvement of large-scale circulation of basinal brines from an evaporitic source are inferred to have contributed to the formation of the ‘Cornwall-type’ mineralization in Cihai.  相似文献   
4.
新疆磁海铁(钴)矿床次火山热液成矿学   总被引:17,自引:4,他引:13  
磁海铁(钴)矿床颇具特色,以“石榴石-透辉石-磁铁矿”为基本矿石建造;成矿作用发生在早二叠世北山裂陷作用和火成活动晚期,以基性次火山岩浆期后富铁流体的(交代)充填为成矿方式,矿体产于辉绿岩体原生裂隙系统;成矿流体的化学演化具有典型(火山)岩浆期后热深演化特点,形成了一系列热液蚀变其中石榴石透辉石岩有别于传统理解的“夕卡岩”;成矿物质源于碱性玄武岩浆,基性次火山岩浆多次脉动式入侵是矿床形成的必要条件  相似文献   
5.
The Cihai iron-cobalt deposit is located in the southern part of the eastern Tianshan ironpolymetallic metallogenic belt. Anomalous native gold and bismuth have been newly identified in Cinan mining section of the Cihai deposit. Ore formation in the deposit can be divided into three stages based on geological and petrographical observations:(I) skarn, with the main mineral assemblage being garnet-pyroxene-magnetite;(II) retrograde alteration, forming the main iron ores and including massive magnetite, native gold, native bismuth, and cobalt-bearing minerals, with the main mineral assemblage being ilvaite-magnetite-native gold-native bismuth; and(III) quartz-calcitesulfide assemblage that contains quartz, calcite, pyrrhotite, cobaltite, and safflorite. Native gold mainly coexists with native bismuth, and they are paragenetically related. The temperature of initial skarn formation was higher than 340℃, and then subsequently decreased to ~312℃ and ~266℃. The temperature of the hydrothermal fluid during the iron ore depositional event was higher than the melting point of native bismuth(271℃), and native bismuth melt scavenged gold in the hydrothermal fluid, forming a Bi-Au melt. As the temperature decreased, the Bi-Au melt was decomposed into native gold and native bismuth. The native gold and native bismuth identified during this study can provide a scientific basis for prospecting and exploration for both gold- and bismuth-bearing deposits in the Cihai mining area. The gold mineralization in Cihai is a part of the Early Permian Cu-Ni-Au-Fe polymetallic ore-forming event, and its discovery has implications for the resource potential of other iron skarn deposits in the eastern Tianshan.  相似文献   
6.
新疆东天山是中国重要铁铜多金属成矿带之一,磁海大型铁矿床位于该成矿带南缘的北山裂谷带内。铁矿体赋存于早期辉绿岩和矽卡岩中,呈透镜状、脉状近平行排列,后期辉绿岩脉穿切早期辉绿岩和矿体。在野外地质调查的基础上,文章对早期辉绿岩和成矿期后辉绿岩脉进行了年代学研究。锆石LA-MC-ICP MS U-Pb测年结果表明,赋矿辉绿岩的形成时代为(286.5±1.8)Ma和(284.8±1.3)Ma,辉绿岩脉形成于(275.8±2.2)Ma,由此限定磁海铁矿床的形成年龄在286~275 Ma,属于早二叠世成矿。结合区域岩浆和构造活动研究成果认为,磁海铁矿床成矿作用与东天山地区早二叠世大规模镁铁质-超镁铁质岩浆作用密切相关,形成于碰撞后伸展构造环境中。  相似文献   
7.
磁海铁(钴)矿床是北山地区一大型富钴铁矿床,矿体产于辉绿岩中。矿区出露有大量的辉长岩。本文利用锆石LA-ICP-MS定年法,获得磁海矿区角闪辉长岩和磁南矿区粗晶辉长岩的206Pb/238U年龄分别为294.8±1.3Ma和276.1±0.63Ma,表明它们属早二叠世岩浆活动的产物。地球化学特征上,角闪辉长岩与辉绿岩为同源岩浆演化的产物,它们具有中等偏低的Mg#值(49~66)和相对高的TiO2含量(2.27%~2.57%),属钙碱性和拉斑玄武岩系列(FeOT/MgO=0.93~1.84),其微量元素显示富集大离子亲石元素(LILE)和轻稀土元素(LREE),亏损Nb、Ta和Ti,并具明显的Eu负异常。粗晶辉长岩与前者具有不同特征,它们有高的Mg#值(72~81)和低的TiO2含量(0.24%~0.39%),属钙碱性玄武岩系列,具有富集大离子亲石元素Ba、Th、U、Pb、Sr和轻稀土元素(LREE),亏损Nb、Zr、Hf和P,并具明显的Eu正异常特征。角闪辉长岩和粗晶辉长岩具有正的εHf(t)值(分别为4.6~11.7和1.5~5.1)。与北山地区同时代的具铜镍矿化的镁铁-超镁铁岩具有相同的特征。因此,认为磁海铁矿区基性岩形成于后碰撞伸展背景,由亏损的软流圈地幔熔体与俯冲板片物质的混合物。不同类型的岩石系不同成分的原始岩浆经不同演化过程的产物。  相似文献   
8.
齐天骄  薛春纪  朱祥坤 《地质通报》2017,36(6):1064-1076
新疆磁海铁矿位于北山构造-成矿带西端,以磁海矿段为主要组成部分,铁矿体主要为透镜状、似层状,围岩以辉绿岩为主,二者接触线截然且平直;另外一种矿体产在基性岩体与地层接触带的石榴子石透辉石矽卡岩岩体内,整个矽卡岩岩体即为铁矿体。通过野外矿床特征与矿相学研究,成矿过程可分为:(1)矿浆期,以磁铁矿+单斜辉石+普通角闪石的近同时产出为特征;(2)矽卡岩期,先期以石榴子石+透辉石+磁铁矿为特征,后期以透闪石/阳起石+石英+磁黄铁矿+黄铜矿+黄铁矿的组合为特征。通过对矿浆期及矽卡岩期典型矿物的地球化学及Fe、S、O同位素结果分析,认为矿浆期铁质具有幔源特征,矽卡岩期成矿流体对矿浆期具有继承性。通过与前人研究结果对比分析,认为磁海成矿可能形成于塔里木地区二叠纪地幔柱背景,含矿母岩浆可能为地幔柱的分支。  相似文献   
9.
Most skarn deposits are closely related to granitoids that intruded into carbonate rocks. The Cihai (>100 Mt at 45% Fe) is a deposit with mineral assemblages and hydrothermal features similar to many other typical skarn deposits of the world. However, the iron orebodies of Cihai are mainly hosted within the diabase and not in contact with carbonate rocks. In addition, some magnetite grains exhibit unusual relatively high TiO2 content. These features are not consistent with the typical skarn iron deposit. Different hydrothermal and/or magmatic processes are being actively investigated for its origin. Because of a lack of systematic studies of geology, mineral compositions, fluid inclusions, and isotopes, the genetic type, ore genesis, and hydrothermal evolution of this deposit are still poorly understood and remain controversial.The skarn mineral assemblages are the alteration products of diabase. Three main paragenetic stages of skarn formation and ore deposition have been recognized based on petrographic observations, which show a prograde skarn stage (garnet-clinopyroxene-disseminated magnetite), a retrograde skarn stage (main iron ore stage, massive magnetite-amphibole-epidote ± ilvaite), and a quartz-sulfide stage (quartz-calcite-pyrite-pyrrhotite-cobaltite).Overall, the compositions of garnet, clinpyroxene, and amphibole are consistent with those of typical skarn Fe deposits worldwide. In the disseminated ores, some magnetite grains exhibit relatively high TiO2 content (>1 wt.%), which may be inherited from the diabase protoliths. Some distinct chemical zoning in magnetite grains were observed in this study, wherein cores are enriched in Ti, and magnetite rims show a pronounced depletion in Ti. The textural and compositional data of magnetite confirm that the Cihai Fe deposit is of hydrothermal origin, rather than associated with iron rich melts as previously suggested.Fluid inclusions study reveal that, the prograde skarn (garnet and pyroxene) formed from high temperature (520–600 °C), moderate- to high-salinity (8.1–23.1 wt.% NaCl equiv, and >46 wt.% NaCl equiv) fluids. Massive iron ore and retrograde skarn assemblages (amphibole-epidote ± ilvaite) formed under hydrostatic condition after the fracturing of early skarn. Fluids in this stage had lower temperature (220°–456 °C) and salinity (8.4–16.3 wt.% NaCl equiv). Fluid inclusions in quartz-sulfide stage quartz and calcite also record similar conditions, with temperature range from 128° to 367 °C and salinity range from 0.2 to 22.9 wt.% NaCl equiv. Oxygen and hydrogen isotopic data of garnet and quartz suggest that mixing and dilution of early magmatic fluids with external fluids (e.g., meteoric waters) caused a decrease in fluid temperature and salinity in the later stages of the skarn formation and massive iron precipitation. The δ18O values of magnetite from iron ores vary between 4.1 and 8.5‰, which are similar to values reported in other skarn Fe deposits. Such values are distinct from those of other iron ore deposits such as Kiruna-type and magmatic Fe-Ti-V deposits worldwide. Taken together, these geologic, geochemical, and isotopic data confirm that Cihai is a diabase-hosted skarn deposit related to the granitoids at depth.  相似文献   
10.
对新疆磁海铁矿区镁铁-超镁铁质岩与铁成矿关系、正长岩与镁铁质岩关系的解剖,是认识磁海矿区成岩、成矿过程及构造背景的关键。本文利用SIMS锆石U-Pb测年法,获得磁海辉绿岩、辉长辉绿岩、磁南辉长岩、磁海北角闪石英正长岩的206Pb/238U-207Pb/235U谐和年龄分别为275.1±2.2Ma、281.9±3.2Ma、273.0±1.9Ma和273.0±1.8Ma,这与北山乃至北疆地区主要含铜镍-钒钛磁铁矿的镁铁-超镁铁质岩年龄一致。岩石地球化学特征研究显示,从辉石岩到辉长岩,再到辉绿岩,经历了Ti逐渐富集、Mg#和m/f值先增加后降低的过程,角闪石英正长岩具有A型花岗岩特征,与辉长岩、辉绿岩在成因上存在互补关系。综合年代学和地球化学特征,磁南辉石岩、辉长岩、磁海辉绿岩、辉长辉绿岩以及磁海北边的角闪石英正长岩为同源岩浆演化的产物,岩浆演化过程中受地壳混染作用微弱,在岩浆演化的早期,磁铁矿的结晶分离主导着岩浆成分的改变,当岩浆演化到辉长岩阶段,岩浆开始以结晶分异作用为主;磁铁矿的分离结晶时间早于钛铁矿,岩浆型的金属硫化物为磁铁矿和钛铁矿结晶过渡阶段的产物。磁海镁铁-超镁铁质岩石在成岩及成矿作用上可能与在时间和空间上相邻近的塔里木早二叠世大火成岩省有密切关系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号