首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   541篇
  免费   60篇
  国内免费   178篇
地球物理   57篇
地质学   652篇
海洋学   34篇
天文学   5篇
综合类   10篇
自然地理   21篇
  2024年   3篇
  2023年   3篇
  2022年   8篇
  2021年   7篇
  2020年   26篇
  2019年   16篇
  2018年   20篇
  2017年   22篇
  2016年   19篇
  2015年   14篇
  2014年   34篇
  2013年   31篇
  2012年   41篇
  2011年   23篇
  2010年   18篇
  2009年   30篇
  2008年   38篇
  2007年   44篇
  2006年   35篇
  2005年   38篇
  2004年   39篇
  2003年   35篇
  2002年   23篇
  2001年   43篇
  2000年   40篇
  1999年   32篇
  1998年   17篇
  1997年   18篇
  1996年   17篇
  1995年   11篇
  1994年   8篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有779条查询结果,搜索用时 203 毫秒
1.
笔者曾对广西芒场锡多金属矿田的稳定同位素进行研究。本文根据硫、铅、氢、氧、碳等稳定同位素组成和锶的初始值提供的信息.探讨了矿床成因。并结合矿田矿床地质特征、控矿条件及有关统计参数,参考前人对矿床认识的基础上,修正提出了该矿田混合热液成矿模式,可供类似矿床研究和找矿的参考。  相似文献   
2.
We report analyses of noble gases and Nd–Sr isotopes in mineral separates and whole rocks of late Pleistocene (< 0.2 Ma) monzonites from Ulleungdo, South Korea, a volcanic island within the back arc basin of the Japan island arc. A Rb–Sr mineral isochron age for the monzonites is 0.12 ± 0.01 Ma. K–Ar biotite ages from the same samples gave relatively concordant ages of 0.19 ± 0.01and 0.22 ± 0.01 Ma. 40Ar/39Ar yields a similar age of 0.29 ± 0.09 Ma. Geochemical characteristics of the felsic plutonic rocks, which are silica oversaturated alkali felsic rocks (av., 12.5 wt% in K2O + Na2O), are similar to those of 30 alkali volcanics from Ulleungdo in terms of concentrations of major, trace and REE elements. The initial Nd–Sr isotopic ratios of the monzonites (87Sr/86Sr = 0.70454–0.71264, 143Nd/144Nd = 0.512528–0.512577) are comparable with those of the alkali volcanics (87Sr/86Sr = 0.70466–0.70892, 143Nd/144Nd = 0.512521–0.512615) erupted in Stage 3 of Ulleungdo volcanism (0.24–0.47 Ma). The high initial 87Sr/86Sr values of the monzonites imply that seawater and crustally contaminated pre-existing trachytes may have been melted or assimilated during differentiation of the alkali basaltic magma.A mantle helium component (3He/4He ratio of up to 6.5 RA) associated with excess argon was found in the monzonites. Feldspar and biotite have preferentially lost helium during slow cooling at depth and/or during their transportation to the surface in a hot host magma. The source magma noble gas isotopic features are well preserved in fluid inclusions in hornblende, and indicate that the magma may be directly derived from subcontinental lithospheric mantle metasomatized by an ancient subduction process, or may have formed as a mixture of MORB-like mantle and crustal components. The radiometric ages, geochemical and Nd–Sr isotopic signatures of the Ulleungdo monzonites as well as the presence of mantle-derived helium and argon, suggests that these felsic plutonic rocks evolved from alkali basaltic magma that formed by partial melting of subcontinental lithospheric mantle beneath the back arc basin located along the active continental margin of the southeastern part of the Eurasian plate.  相似文献   
3.
Beard  James S. 《Journal of Petrology》2008,49(5):1027-1041
If a magma is a hybrid of two (or more) isotopically distinctend-members, at least one of which is partially crystalline,separation of melt and crystals after hybridization will leadto the development of isotopic heterogeneities in the magmaas long as some of the pre-existing crystalline material (antecrysts)retains any of its original isotopic composition. This holdstrue whether the hybridization event is magma mixing as traditionallyconstrued, bulk assimilation, or melt assimilation. Once a magma-scaleisotopic heterogeneity is formed by crystal–melt separation,it is essentially permanent, persisting regardless of subsequentcrystallization, mixing, or equilibration events. The magnitudeof the isotopic variability resulting from crystal–meltseparation can be as large as that resulting from differentialcontamination, multiple isotopically distinct sources, or insitu isotopic evolution. In one model, a redistribution of one-thirdof the antecryst cargo yielded a crystal-enriched sample with87Sr/86Sr of 0·7058, whereas the complementary crystal-poorsample has 87Sr/86Sr of 0·7068. In other models, crystal-richsamples are enriched in radiogenic Sr. Isotopic heterogeneitiescan be either continuous (controlled by the modal distributionof crystals and melt) or discontinuous (when there is completeseparation of crystals and liquid). The first case may be exemplifiedby some isotopically zoned large-volume rhyolites, formed bythe eruptive inversion of a modally zoned magma chamber. Inthe latter case, the isotopic composition of any (for example)interstitial liquid will be distinct from the isotopic compositionof the bulk crystal fraction. The separation of such an interstitialliquid may explain the presence of isotopically distinct late-stageaplites in plutons. Crystal–melt separation provides anadditional option for the interpretation of isotopically zonedor heterogeneous magmas. This option is particularly attractivefor systems whose chemical variation is otherwise explicableby fractionation-dominated processes. Non-isotopic chemicalheterogeneities can also develop in this fashion. KEY WORDS: isotopic heterogeneity; zoning; hybrid magma; crystal separation; Sr isotopes; aplite; rhyolite  相似文献   
4.
The mineral composition and U-Pb and Rb-Sr systematics of phosphorites from the Satka Formation of Lower Riphean carbonates, the Burzyan Group of Southern Urals, are studied. Phosphorites occurring as small lenses between stromatolite layers are composed largely of fluorapatite with admixture of detrital quartz, feldspars, illite, and chlorite. Phosphorite samples have been subjected to stepwise dissolution in 1 N (fraction L-1) and 2 N (fraction L-2) HCl. As is established, the maximum apatite content is characteristic of fraction L-1, while fraction L-2 is enriched in products of dolomite and sulfide dissolution and in elements leached from siliciclastic components. The Sr content in the Satka apatites (280–560 ppm) is substantially lower as compared with that in unaltered marine apatite. The 87Sr/86Sr “initial ratio in the phosphorites studied (0.71705–0.72484) and host dolomites from the lower part of the Satka Formation is significantly higher than in the Early Riphean seawater that indicates a reset of the Rb-Sr original systems in sediments. The Pb-Pb age of 1340 ± 30 Ma (MSWD = 6.4) estimated based on 7 data points characterizing fractions L-1 and L-2 is younger than the formation time of overlying Burzyan sediments, being consistent, within the error range, with date of the Mashak rifting event recorded at the Early-Middle Riphean boundary. The comparative U-Pb characteristics of two soluble fractions (L-1 and L-2) and silicate residue of phosphorites show that epigenetic redistribution of Pb and U was characteristic of the phosphorite horizon only. The initial Pb isotope composition and μ (238U/204Pb) estimated according to model by Stacey and Kramers for the early diagenetic fluids in carbonate and phosphate sediments of the Satka Formation suggest that they were in isotopic equilibrium with erosion products of the Taratash crystalline complex.  相似文献   
5.
崂山花岗岩地区含锶、偏硅酸矿泉水的形成机理   总被引:1,自引:0,他引:1  
报道了崂山花岗岩地区矿泉水的特征。指出其矿泉类型为含锶、偏硅酸型,并讨论了其形成机理。  相似文献   
6.
采用溶胶低温燃烧法和高温固相反应法制备了锶掺杂的正铌酸镧(La0.95Sr0.05NbO4)超细陶瓷粉体。应用XRD、SEM和激光粒度分析仪等对陶瓷粉体的物相、粒度和粒度分布进行了表征,同时考察了两种方法制备的粉体的烧结性能。结果表明:采用溶胶低温燃烧法制备的La0.95Sr0.05NbO4(LSNb)为粒径〈100 nm、粒度分布范围窄的超细粉体;高温固相反应法制备的粒径为0.5-1.0μm、呈球形的LSNb超细陶瓷粉体。溶胶低温燃烧法制备的粉体在1 250℃烧结10 h形成致密的陶瓷片;高温固相反应法制备的粉体在1 400℃以上烧结10 h致密。两种LSNb致密膜均具有一定的透氢作用,900℃氢渗速率分别为1.96&#215;10^-3mL&#183;cm^-2&#183;min^-1和1.67&#215;10^-3mL&#183;cm^-2&#183;min^-1。  相似文献   
7.
We measured both mass-dependent isotope fractionation of δ88Sr (88Sr/86Sr) and radiogenic isotopic variation of Sr (87Sr/86Sr) for the Neoproterozoic Doushantuo Formation that deposited as a cap carbonate immediately above the Marinoan-related Nantuo Tillite. The δ88Sr and 87Sr/86Sr compositions showed three remarkable characteristics: (1) high radiogenic 87Sr/86Sr values and gradual decrease in the 87Sr/86Sr ratios, (2) anomalously low δ88Sr values at the lower part cap carbonate, and (3) a clear correlation between 87Sr/86Sr and δ88Sr values. These isotopic signatures can be explained by assuming an extreme greenhouse condition after the Marinoan glaciation. Surface seawater, mixed with a large amount of freshwater from continental crusts with high 87Sr/86Sr and lighter δ88Sr ratios, was formed during the extreme global warming after the glacial event. High atmospheric CO2 content caused sudden precipitation of cap carbonate from the surface seawater with high 87Sr/86Sr and lighter δ88Sr ratios. Subsequently, the mixing of the underlying seawater, with unradiogenic Sr isotope compositions and normal δ88Sr ratios, probably caused gradual decrease of the 87Sr/86Sr ratios of the seawater and deposition of carbonate with normal δ88Sr ratios. The combination of 87Sr/86Sr and δ88Sr isotope systematics gives us new insights on the surface evolution after the Snowball Earth.  相似文献   
8.
The Cretaceous-Paleogene granites of the Eastern Sikhote Alin volcanic belt (ESAVB) and Late Cretaceous granitoids of the Tatibin Series (Central Sikhote Alin) are subdivided into three groups according to their oxygen isotope composition: group I with δ18O from +5.5 to +6.5‰, group II with δ18O from +7.6 to +10.2‰, and group III with less than +4.5‰. Group I rocks are similar in oxygen isotope composition to that of oceanic basalts and can be derived by melting of basaltic crust. Group II (rocks of the Tatibin Series) have higher δ18O, which suggests that their parental melts were contaminated by sedimentary material. The low 18O composition of group III rocks can be explained by their derivation from 18O-depleted rocks or by subsolidus isotopic exchange with low-18O fluid or meteoric waters. The relatively low δ18O and 87Sr/86Sr in the granitoids of Primorye suggest their derivation from rocks with a short-lived crustal history and can result from the following: (1) melting of sedimentary rocks enriched in young volcanic material that was accumulated in the trench along the transform continental margin (granites of the Tatibin Series) and (2) melting of a mixture of abyssal sediments, ocean floor basalts, and upper mantle in the lithospheric plate that subsided beneath the continent in the subduction zone (granites of the ESAVB).  相似文献   
9.
The Mariánské Lázn complex (MLC) is located in the Bohemian Massif along the north-western margin of the Teplá-Barrandian microplate and consists of metagabbro, amphibolite and eclogite, with subordinate amounts of serpentinite, felsic gneiss and calcsilicate rocks. The MLC is interpreted as a metaophiolite complex that marks the suture zone between the Saxothuringian rocks to the north-west and the Teplá-Barrandian microplate to the south-east. Sm-Nd geochronology of garnet-omphacite pairs from two eclogite samples yields ages of 377±7, and 367±4 Ma. Samples of eclogite and amphibolite do not define a whole rock Sm-Nd isochron, even though there is a large range in Sm/Nd ratio, implying that the suite of samples may not be cogenetic. Eclogites do not have correlated Nd values and initial 87Sr/86Sr ratios. Five of the eight eclogite samples have high Nd values (+10.2 to +7.1) consistent with derivation from a MORB-like source, but variable 87Sr/86Sr ratios (0.7033 to 0.7059) which probably reflect hydrothermal seawater alteration. Three other eclogite samples have lower Nd values (+ 5.4 to –0.8) and widely variable 87Sr/86Sr ratios (0.7033 to 0.7096). Such low Nd values are inconsistent with derivation from a MORB, source and may reflect a subduction or oceanic island basalt component in their source. The MLC is an important petrotectonic element in the Bohemian Massif, providing evidence for Cambro-Ordovician formation of oceanic crust and interaction with seawater, Late Devonian (Frasnian-Famennian) high- and medium-pressure metamorphism related to closure of a Saxothuringian ocean basin, Early Carboniferous (Viséan) thrusting of the Teplá terrane over Saxothuringian rocks and Late Viséan extension.  相似文献   
10.
Bedrock weathering and atmospheric deposition are the two primary sources of base cations (K^+, Na^+, Ca^2+ and Mg^2+) to forest ecosystems. Therefore, the key problem is to understand the relative inputs from these two sources and the cycling in the ecosystem. This study focuses on the effects of acid deposition on cation cycling in a small-forested karstic catchment in Guizhou Province. Sr isotope ratios were used as a tracer for understanding the transport process between the different cation pools: rock, soil, surface water, atmospheric deposition and plant. The samples of wet deposition, total deposition, throughfall, surface and ground waters, vegetation, and soil were monthly collected. The exchangeable Sr^2+ and Ca^2+ in soil samples were extracted by using 1 M ammonium acetate. The leaf-tissue samples were ashed at 550℃, and the residue was digested in ultrapure HClO4 and HNO3. All water samples were filtrated through 0.45 μm aperture filter paper. Base cation concentrations and Sr isotopic composition were analyzed for all the samples. The results show that acid deposition (average pH 4.9) frequently occurred in the studied region. Cation abundance follows an increasing manner from rainwater, throughfall, to surface water or ground water samples, suggesting that acid deposition at first eiuviates Ca^2+ , Mg^2+ and Sr^2+ from leaf, then the exchangeable cations from soil, and at last cations accumulate in surface water or ground water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号