首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Precambrian/Cambrian (PC/C) boundary is one of the most important intervals for the evolution of life. However, the scarcity of well-preserved outcrops across the boundary leaves an obstacle in decoding surface environmental changes and patterns of biological evolution.In south China, strata through the PC/C boundary are almost continuously exposed and contain many fossils, suitable for study of environmental and biological change across the PC/C boundary. We undertook deep drilling at four sites in the Three Gorges area to obtain continuous and fresh samples without surface alteration and oxidation. 87Sr/86Sr ratios of the fresh carbonate rocks, selected based on microscopic observation and geochemical signatures of Mn/Sr and Rb/Sr ratios, aluminum and silica contents, and δ13C and δ18O values, were measured with multiple collector-inductively coupled plasma–mass spectrometric techniques.The chemostratigraphy of 87Sr/86Sr ratios of the drilled samples displays a smooth curve and a large positive anomaly just below the PC/C boundary between the upper part of Baimatuo Member of the Dengying Formation and the lower part of the Yanjiahe Formation. The combination of chemostratigraphies of δ13C and 87Sr/86Sr indicates that the 87Sr/86Sr excursions preceded the δ13C negative excursion, and suggests that global regression or formation of the Gondwana supercontinent, possibly together with a high atmospheric pCO2, caused biological depression.  相似文献   

2.
3.
Salt diapirs contain a few percent of anhydrite that accumulated as residue to form anhydrite cap rocks during salt dissolutions. Reported 87Sr/86Sr ratios of these salt-hosted and cap rock anhydrites in the Gulf Coast, U.S.A., indicate their derivation from Middle Jurassic seawater. However, a much wider range of 87Sr/86Sr ratios, incorporating a highly radiogenic component in addition to the Middle Jurassic component, has been found in several Gulf Coast salt domes. This wide range of 87Sr/86Sr ratios of anhydrite within the salt stocks records Sr contributions from both marine water and formation water that has equilibrated with siliciclastics. During cap rock formation this anhydrite either recrystallized in the presence of, or was cemented by, a low-Sr fluid with a Late Cretaceous seawter-type Sr isotope ratio or simply lost Sr during recrystallization. Later, the cap rock was invaded by warm saline brines with high Sr isotope ratios from which barite and metal sulfides were precipitated. Subsequently, low-salinity water hydrated part of the anhydrite bringing to six the total number of fluids that interacted througout the history of salt dome and cap rock growth. The progenitor of these salt diapirs, the Louann Formation, is generally thought to have formed from marine water evaporated to halite and, rarely, higher evaporite facies. Salt domes in the East Texas, North Louisiana, and Mississippi Salt Basins have 87Sr/86Sr and δ34S values that corroborate a Mid-Jurassic age for the mother salt. However, salt domes in the Houston and Rio Grande Embayments of the Gulf Coast Basin have 87Sr/86Sr ration ranging to values higher than both Middle Jurassic seawater and all Rb-free marine Phanerozoic rocks. These anomalous 87Sr/86Sr ratios are probably derived from radiogenic Sr-bearing fluids that equilibrated with siliciclastic rocks and invaded the salt either prior to, or during, diapirism. Potential sources of the radiogenic 87Sr component include clay and/or feldspar (located either in older units beneath the Louann Formation or younger units flanking the salt diapirs) and K-salts within the Louann evaporites. Because partial Sr exchange in anhydrite had to take place in a fluid medium, admittance of radiogenic 87Sr-bearing fluids into the salt may have led to diapirism by lowering the shear strength of the crystalline salt. The slight number of anomalous 87Sr/86Sr values in the interior basins indicates that anomalous values are related to areally discrete structural or stratigraphic controls that affected only the Gulf Coast Basin.  相似文献   

4.
Variations in frequency of geomagnetic reversals through the Phanerozoic have been analyzed jointly with 87Sr/ 86Sr ratios in marine carbonate sediments. The time series of both parameters contain principal components with periods from 90 to 110 Ma and show a certain correlation. Namely, (i) both time series have five local minimums spaced at similar intervals (period lengths); (ii) the minimums in the Δ87Sr/86Sr curve follow in time those of the reversal frequency, with a lag from 12 Myr in the Ordovician to 38 Myr in the Cretaceous; (iii) the rate of heat transfer from processes at the core-mantle boundary (in D″ layer) which control the Earth's geological life was from 7 to 25 cm/yr in the Phanerozoic. This rate approaches the observed velocities of horizontal plate motion and the predicted mantle convection rates.  相似文献   

5.
The role of silicate and carbonate weathering in contributing to the major cation and Sr isotope geochemistry of the headwaters of the Ganga-Ghaghara-Indus system is investigated from the available data. The contributions from silicate weathering are determined from the composition of granites/ gneisses, soil profiles developed from them and from the chemistry of rivers flowing predominantly through silicate terrains. The chemistry of Precambrian carbonate outcrops of the Lesser Himalaya provided the data base to assess the supply from carbonate weathering. Mass balance calculations indicate that on an average ∼ 77% (Na + K) and ∼ 17% (Ca + Mg) in these rivers is of silicate origin. The silicate Sr component in these waters average ∼40% and in most cases it exceeds the carbonate Sr. The observations that (i) the87Sr/86Sr and Sr/Ca in the granites/gneisses bracket the values measured in the head waters; (ii) there is a strong positive correlation between87Sr/86Sr of the rivers and the silicate derived cations in them, suggest that silicate weathering is a major source for the highly radiogenic Sr isotope composition of these source waters. The generally low87Sr/86Sr (< 0.720) and Sr/Ca (∼ 0.2 nM/ μM) in the Precambrian carbonate outcrops rules them out as a major source of Sr and87Sr/86Sr in the headwaters on a basin-wide scale, however, the high87Sr/86Sr (∼ 0.85) in a few of these carbonates suggests that they can be important for particular streams. The analysis of87Sr/86Sr and Ca/Sr data of the source waters show that they diverge from a low87Sr/86Sr and low Ca/Sr end member. The high Ca/Sr of the Precambrian carbonates precludes them from being this end member, other possible candidates being Tethyan carbonates and Sr rich evaporite phases such as gypsum and celestite. The results of this study should find application in estimating the present-day silicate and carbonate weathering rates in the Himalaya and associated CO2 consumption rates and their global significance.  相似文献   

6.
《International Geology Review》2012,54(15):1927-1939
ABSTRACT

The 87Sr/86Sr minimum of the Capitanian seawater is one of the most significant features in the Phanerozoic seawater 87Sr/86Sr history. In order to assess possible contribution of the Emeishan large igneous provinces (LIPs) to strontium isotope evolution of the Capitanian seawater, 87Sr/86Sr ratios were measured from the Capitanian limestones which are locally interlayered with the Emeishan basalts. The limestones underlying the Emeishan basalts have high 87Sr/86Sr ratios (0.7070–0.7074). However, extremely low 87Sr/86Sr ratios (0.7068–0.7070) were identified in the late Capitanian Jinogondolella prexuanhanensisJ. xuanhanensis zones, which correspond to the eruption time of the Emeishan LIP. The temporal coincidence of these two phenomena supports the idea of a potential linkage between Capitanian 87Sr/86Sr minimum and eruption of this igneous province. The strong submarine hydrothermal activity and erosion of the Emeishan LIP could have released large amounts of non-radiogenic Sr to the oceans and play an important role in strontium isotope evolution of the seawater.  相似文献   

7.
Among the Phanerozoic granitoids of East Asia, the most prevailing Cenozoic–Mesozoic rocks are reviewed with respect to gabbro/granite ratio, bulk composition of granitoids, redox state, and O- and Sr-isotopic ratios. Quaternary volcanic rocks, ranging from basalt to rhyolite, but typically felsic andesite in terms of bulk composition in island arcs, are oxidized type, possibly due to oxidants from subducting oceanic crust into the source regions. Miocene plutonic rocks in the back-arc of Japan could be a root zone for such volcanism but are more felsic in composition. Cenozoic–Mesozoic plutonic zones are classified by (1) the redox state (magnetite/ilmenite series), and (2) average bulk composition (granodiorite/granite). The granodioritic magnetite series occur with fairly abundant gabbro and diorite in the back-arc of island arcs (Greentuff Belt) and intercontinental rapture zones (Yangtze Block). These rocks are mostly juvenile in terms of the 87Sr/86SrI and δ18O values.The granitic magnetite series with some gabbroids occur in rapture zones along the continental coast (Gyeongsang Basin, Fujian Coast) and the back-arc of island arc (Sanin Belt). They were generated mostly in felsic continental crust, with the help of heat and magmas from upper mantle. The generated granitic magmas had little interaction with C- and S-bearing reducing materials, due probably to extensional tectonic settings. The δ18O value gives narrow ranges but the 87Sr/86SrI ratio varies greatly depending upon the age and composition of the continental crust. Granitic ilmenite-series are characterized by high δ18O values, implying much contribution of sediments. The 87Sr/86SrI ratios are low in island arcs but very high in continental interior settings. Amount of mafic magmas from the upper mantle seems a key to control the composition of granitoid series in island arc settings, while original composition of the protolith may be the key to control granitoid composition in continental interiors.  相似文献   

8.
Rb–Sr systematics has been studied in 13C-rich carbonate rocks of the Paleoproterozoic (2.09 ± 0.07 Ga) Tulomozero Formation in the northern Onega Lake area, the SE Fennoscandian Shield. The formation is divided into eight members (A–F) consisting of greenschist-facies-grade, variegated sandstones, siltstones, mudstones, stromatolitic dolostones and subordinate crystalline limestones. Samples of carbonate rocks were obtained from two overlapping drillholes intersecting the entire thickness of the Tulomozero Formation. Prior to isotope analysis, the rocks powders were treated with 1N ammonium acetate for partial removal of the late epigenetic carbonate phases. Major resetting of the Rb–Sr systems in the Tulomozero carbonate rocks appears to take place during the Svecofennian regional metamorphic event, and it was screened by using Mn/Sr, Fe/Sr, Mg/Ca, and 18O/16O ratios. High Sr content (up to 2080 μg/g in limestones, and 530 μg/g in dolostones) coupled with low Fe/Mn (<0.40) ratios in the Tulomozero carbonate rocks of Members A, B (the lower part), D, F, and E are consistent with accumulation of original carbonate sediments in evaporitic lacustrine, playa, and sabkha environments. A decrease in the Sr content with concurrent increase in the Fe/Mn ratio (>0.40) in dolostones of the upper part of Member B, and of Members G and H is indicative of seawater influxes (sea transgression) into the Tulomozero basin. The 87Sr/86Sr values in the least altered (Mn/Sr < 2.0) marine dolostones are 0.70418–0.70442 and 0.70343–0.70409 for the earlier and late phases of the marine transgression, respectively. The decrease in the 87Sr/86Sr ratio in ca. 2.1 Ga seawater is attributable to an increase in hydrothermal flux Sr into the Palaeoproterozoic ocean.  相似文献   

9.
We used analyses of the strontium isotope (87Sr/86Sr) ratios of tooth enamel to reconstruct the migration patterns of fossil mammals collected along the Aucilla River in northern Florida. Specimens date to the late-glacial period and before the last glacial maximum (pre-LGM). Deer and tapir displayed low 87Sr/86Sr ratios that were similar to the ratios of Florida environments, which suggest that these taxa did not migrate long distance outside of the Florida region. Mastodons, mammoths, and equids all displayed a wide range of 87Sr/86Sr ratios. Some individuals in each taxon displayed low 87Sr/86Sr ratios that suggest they ranged locally, while other animals had high 87Sr/86Sr ratios that suggest they migrated long distances (> 150 km) outside of the Florida region. Mastodons were the only taxa from this region that provided enough well-dated specimens to compare changes in migration patterns over time. Pre-LGM mastodons displayed significantly lower 87Sr/86Sr ratios than late-glacial mastodons, which suggests that late-glacial mastodons from Florida migrated longer distances than their earlier counterparts. This change in movement patterns reflects temporal changes in regional vegetation patterns.  相似文献   

10.
河北平原地下水锶同位素形成机理   总被引:5,自引:0,他引:5  
为了研究河北平原地下水锶同位素的来源与形成机理, 对所采水样进行了分析.研究了87Sr/86Sr比值“时间积累效应”: 随着地下水年龄和埋深的增大而增大; 与地下水中过剩4Heexc呈正相关关系, 与δ18O和δD呈负相关关系.探讨了Sr2+与87Sr/86Sr比值的关系, 将地下水分为3类: (1) 中等Sr2+含量与高87Sr/86Sr比值水(Ⅰ类水); (2) 低Sr2+含量与高87Sr/86Sr比值水(Ⅱ类水); (3) 高Sr2+含量与低87Sr/86Sr比值水(Ⅲ类水), 即热水.通过综合分析认为: (1) 河北平原第四系地下水中的放射成因Sr是由富含Na和Rb的硅酸盐矿物风化作用提供的, 主要矿物为斜长石; (2) 黄骅港热水中的放射成因Sr是由碳酸盐溶解形成的, 87Sr/86Sr比值低, Sr/Na比值大; (3) 补给区地下水是由流经火成岩和变质岩区地下水的侧向补给的, 87Sr/86Sr比值中等.第三系地下水放射成因Sr的来源及形成机理尚须进一步研究.   相似文献   

11.
The Rb-Sr and U-Pb systematics are studied in carbonate deposits of the Satka and Suran formations corresponding to middle horizons of the Lower Riphean Burzyan Group in the Taratash and Yamantau anticlinoria, respectively, the southern Urals. The least altered rock samples retaining the 87Sr/86Sr ratio of sedimentation basin have been selected for analysis using the original method of leaching the secondary carbonate phases and based on strict geochemical criteria of the retentivity (Mn/Sr < 0.2, Fe/Sr < 5 and Mg/Ca < 0.024). The stepwise dissolution in 0.5 N HBr has been used to enrich samples in the primary carbonate phase before the Pb-Pb dating. Three (L-4 to L-6) of seven consecutive carbonate fractions obtained by the step-wise leaching are most enriched in the primary carbonate (in terms of the U-Pb systematics). In the 206Pb/204Pb-207Pb/204Pb diagram, data points of these fractions plot along an isochron determining age of 1550 ± 30 Ma (MSWD = 0.7) for the upper member of the Satka Formation. The initial 87Sr/86Sr ratio in the least altered limestones of this formation is within the range of 0.70460–0.70480. Generalization of the Sr isotopic data published for the Riphean carbonates from different continents showed that 1650–1350 Ma ago the 87Sr/86Sr ratio in the world ocean was low, slightly ranging from 0.70456 to 0.70494 and suggesting the prevalent impact of mantle flux.  相似文献   

12.
This work presents new 87Sr/86Sr and δ88/86SrSRM987 isotopic values of thirteen mineral, vegetal and animal reference materials. Except for UB‐N, all our results are consistent with previously published data. Our results highlight intermediate precisions among the best presently published and a non‐significant systematic shift with the calculated δ88/86SrSRM987 mean values for the three most analysed reference materials in the literature (i.e., IAPSO, BCR‐2 and JCp‐1). By comparison with the literature and between two distinct digestions, a significant bias of δ88/86SrSRM987 values was highlighted for two reference materials (UB‐N and GS‐N). It has also been shown that digestion protocols (nitric and multi‐acid) have a moderate impact on the δ88/86SrSRM987 isotopic values for the Jls‐1 reference materials suggesting that a nitric acid digestion of carbonate can be used without significant bias from partial digestion of non‐carbonate impurities. Different δ88/86SrSRM987 values were measured after two independent Sr/matrix separations, according to the same protocol, for a fat‐rich organic reference material (BCR‐380R) and have been related to a potential post‐digestion heterogeneity. Finally, the δ88/86SrSRM987 value differences measured between animal‐vegetal and between coral‐seawater reference materials agree with the previously published results, highlighting an Sr isotopic fractionation along the trophic chain and during carbonate precipitation.  相似文献   

13.
Sr isotope and Ca/Mg/Sr chemical compositions of freshwater ostracode tests separated from a sediment core represent the last 16 ka of sedimentation in Lake Constance, Central Europe. The chemical evolution of the paleowater's dissolved load of Lake Constance was estimated by correcting the ostracode data for Ca/Mg/Sr fractionation due to biogenic calcification. Since the Late Pleistocene deglaciation, the Ca/Sr molar ratios of paleowaters increased systematically from about 100 (a near marine signature) to about 200. Ca/Mg molar ratios varied in the range of 1–25. The 87Sr/86Sr ratios indicate Late Pleistocene paleowater compositions of 0.7086–0.7091, significantly more radiogenic than present day waters (0.7085). Sr isotopes and Ca/Mg/Sr chemical data together show that weathering of Mesozoic evaporites consistently dominated the dissolved Sr load (80–90%). Carbonate and silicate weathering were less important (1–10%). Trends of Sr dissolved loads were therefore not related to Mg which was mainly mobilized by carbonate weathering. Biotite weathering was an important source of radiogenic Sr in the paleowaters. The short-term release (duration about 600–800 years) of radiogenic Sr during glacier retreat started 15.2 ka ago and was due to enhanced biotite weathering at the glacier base. Long-term release of radiogenic Sr was due to biotite weathering in glacial soils and silicate rocks, and has gradually declined since the Late Pleistocene/Holocene transition.  相似文献   

14.
《Applied Geochemistry》2002,17(3):285-300
Strontium and particularly 87Sr/86Sr ratios in stream water have often been used to calculate weathering rates in catchments. Nevertheless, in the literature, discharge variation effects on the geochemical behavior of Sr are often omitted or considered as negligible. A regular survey of both Sr concentrations and Sr isotope ratios of the Strengbach stream water draining a granite (Vosges mountains, France) has been performed during one year. The results indicate that during low water flow periods, waters contain lower Sr concentrations and less radiogenic Sr isotope ratios (Sr=11.6 ppb and 87Sr/86Sr=0.7246 as an average, respectively) than during high water flow periods (Sr= 13 ppb and 87Sr/86Sr=0.7252 as an average, respectively). This is contrary to expected dilution processes by meteoric waters which have comparatively lower Sr isotopic ratios and lower Sr concentrations. Furthermore, 87Sr/86Sr ratios in stream water behave in 3 different ways depending on moisture and on hydrological conditions prevailing in the catchment. During low water flow periods (discharge < 9 l/s), a positive linear relationship exists between Sr isotope ratio and discharge, indicating the influence of radiogenic waters draining the saturated area during storm events. During high water flow conditions, rising discharges are characterized by significantly less radiogenic waters than the recession stages of discharge. This suggests a large contribution of radiogenic waters draining the deep layers of the hillslopes during the recession stages, particularly those from the more radiogenic north-facing slopes. These results allow one to confirm the negligible instantaneous incidence of rainwater on stream water chemistry during flood events, as well as the existence in the catchment of distinct contributive areas and reservoirs. The influence of these areas or reservoirs on the fluctuations of Sr concentrations and on Sr isotopic variations in stream water depends on both moisture and hydrological conditions. Hence, on a same bedrock type, 87Sr/86Sr ratios in surface waters can be related to flow rate. Consequently, discharge variations must be considered as a pre-requisite when using Sr isotopes for calculating weathering rates in catchments, particularly to define the range of variations of the end-members.  相似文献   

15.
Variations in the seawater 87Sr/86Sr curve through time can be caused by fluctuations in the strontium flux or variations in the isotopic ratio from at least six different sources and sinks. Thus, 12 or more parameters control each single measurement although widely accepted assumptions allow this to be reduced to typically six unknowns. Interpreting the causes of time-variation in the seawater 87Sr/86Sr curve is therefore hampered by inherent non-uniqueness. However, this problem is under-constrained rather than unconstrained. As a result, whilst there are an infinite number of possible interpretations, these all come from a few families of very similar solutions. Using this insight, it is possible to find solutions having the smallest possible variations in source flux or source 87Sr/86Sr ratio. Thus, lower-bounds can be placed upon the source variations responsible for the observed fluctuations in the seawater 87Sr/86Sr curve. When applied to the evolution of the Early Jurassic 87Sr/86Sr seawater curve, this approach demonstrates that a short-lived Toarcian event is genuine since it is present in all models, regardless of the values chosen for the unknown source fluxes and unknown source isotope ratios. However, the variations in strontium flux or isotopic ratio necessary to explain the Toarcian event may be significantly smaller than would be predicted assuming modern values for the unknown parameters.  相似文献   

16.
In situ laser ablation analyses rely on the microanalytical homogeneity of reference materials (RMs) and a similar matrix and mass fraction between unknown samples and RMs to obtain reliable results. Suitable carbonate and phosphate RMs for determination of Sr isotope ratios in such materials are limited. Thus, we determined 87Sr/86Sr ratios of several carbonate (JCt‐1, JCp‐1, MACS‐1, MACS‐3) and phosphate (MAPS‐4, MAPS‐5, NIST SRM 1400, NIST SRM 1486) international RMs using dissolved samples and two different multi‐collector inductively coupled plasma‐mass spectrometers (MC‐ICP‐MS). Our Sr isotope data are in agreement with published data and have an improved measurement precision for some RMs. For MACS‐1, we present the first 87Sr/86Sr value. We tested the suitability of these materials for microanalytical analyses by LA‐MC‐ICP‐MS, with two different laser ablation systems: a conventional nanosecond laser and a state‐of‐the‐art femtosecond laser. We investigated the RMs micro‐homogeneity and compared the data with our solution data. Both laser ablation systems yielded identical 87Sr/86Sr ratios within uncertainty to the solution data for RMs with low interferences of REEs. Therefore, these carbonate and phosphate RMs can be used to achieve accurate and precise results for in situ Sr isotope investigations by LA‐MC‐ICP‐MS of similar materials.  相似文献   

17.
The chemical and isotopic composition of pore fluids is presented for five deep-rooted mud volcanoes aligned on a transect across the Gulf of Cadiz continental margin at water depths between 350 and 3860 m. Generally decreasing interstitial Li concentrations and 87Sr/86Sr ratios with increasing distance from shore are attributed to systematically changing fluid sources across the continental margin. Although highest Li concentrations at the near-shore mud volcanoes coincide with high salinities derived from dissolution of halite and late-stage evaporites, clayey, terrigenous sediments are identified as the ultimate Li source to all pore fluids investigated. Light δ7Li values, partly close to those of hydrothermal vent fluids (δ7Li: +11.9‰), indicate that Li has been mobilized during high-temperature fluid/sediment or fluid/rock interactions in the deep sub-surface. Intense leaching of terrigenous clay has led to radiogenic 87Sr/86Sr ratios (0.7106) in pore fluids of the near-shore mud volcanoes. In contrast, non-radiogenic 87Sr/86Sr ratios (0.7075) at the distal locations are attributed to admixing of a basement-derived fluid component, carrying an isotopic signature from interaction with the basaltic crust. This inference is substantiated by temperature constraints from Li isotope equilibrium calculations suggesting exchange processes at particularly high temperatures (>200 °C) for the least radiogenic pore fluids of the most distal location.Advective pore fluids in the off-shore reaches of the Gulf of Cadiz are influenced by successive exchange processes with both oceanic crust and terrigenous, fine-grained sediments, resulting in a chemical and isotopic signature similar to that of fluids in near-shore ridge flank hydrothermal systems. This suggests that deep-rooted mud volcanoes in the Gulf of Cadiz represent a fluid pathway intermediate between mid-ocean ridge hydrothermal vent and shallow, marginal cold seep. Due to the thicker sediment coverage and slower fluid advection rates, the overall geochemical signature is shifted towards the sediment-diagenetic signal compared to ridge flank hydrothermal environments.  相似文献   

18.
To analyze the genesis of Sr isotopes in groundwater of Hebei plain, time-accumulative effect of 87Sr/86Sr ratio was studied. It is shown that 87Sr/86Sr ratio increases with the increasing age and depth of groundwater and has a positive correlation to 4Heexc and a negative correlation to δ18O and δD. The groundwater is divided into three groups to discuss the relation between 87Sr/86Sr ratio and Sr2 content: ① moderate Sr2 content and higher 87Sr/86Sr ratio (water I); ② lower Sr2 content and higher 87Sr/86Sr ratio (water II); and ③ higher Sr2 content and lower 87Sr/86Sr ratio (water III), that is hot water. On the basis of integrated analysis, it was considered that ① the radiogenic Sr in the Quaternary groundwater (Q4-Q1) originates from weathering of silicate rich in Na and Rb, mainly from plagioclase; ② the radiogenic Sr of hot water in Huanghua port is attributed to carbonate disso- lution, with lower 87Sr/86Sr ratio and higher Sr/Na ratio; ③ the recharge area is laterally recharged by the groundwater flowing through igneous and metamorphic rocks, with moderate 87Sr/86Sr ratio. How- ever, the formation mechanism of Sr isotopes in Tertiary groundwater needs further studies.  相似文献   

19.
New Sr isotopic analyses and calculated formation ages of carbonates from the Orgueil CI meteorite are reported. Among the samples analyzed in this work, dolomites give the youngest formation ages and may have been deposited intermittently starting near the time of parent body formation and continuing for at least 30 Ma. The Sr isotope data also suggest that breunnerites (Fe-Mn-Mg carbonates) crystallized after dolomite formation. Leaching experiments on bulk meteorite samples provide evidence for a very mobile, water soluble Sr reservoir in Orgueil that is characterized by extremely radiogenic Sr (87 Sr/86 Sr≈ 0.81-0.82). This unsupported Sr reflects recent element redistribution, possibly at the time of parent body breakup recorded by the ∼ 10 Ma exposure age of Orgueil. The carbonate data in particular corroborate earlier indications that hydrothermal processes were among the earliest events to affect the CI parent body.  相似文献   

20.
The Kaapvaal Craton of South Africa comprises an Archaean core of ≈3.5 Ga lithospheric and crustal rocks surrounded by younger accreted terrains of ≈3.0–2.7 and ≈2.1–1.9 Ga. The craton is covered by relatively undeformed 3.0–2.4 Ga supracrustal rocks, which show the effects of thermal and hydrothermal interaction. Part of this activity is manifested by a large number of epigenetic Pb–Zn (±Ag, Au, Cu, F) deposits in the cover rocks of the Kaapvaal Craton. These include small volcanic and breccia hosted deposits in mafic and felsic volcanic rocks of the 2.7 Ga Ventersdorp Supergroup and the Mississippi Valley-type (MVT) deposits in the carbonates of the Transvaal Supergroup.MVT mineralization at the Pering (and other Zn–Pb deposits) is hosted in fracture-generated N–S breccia bodies in the Paleoproterozoic carbonate succession of the western Kaapvaal Craton. The fluids carrying the metals were focused in vertical bodies within the fracture zones (FZ), the metals and the sulphur being carried together and precipitated in organic-rich sectors of the basin. Two small Pb–Zn deposits within mafic rocks of the Ventersdorp Supergroup, stratigraphically below the basin-hosted MVTs on the southwestern part of the Kaapvaal Craton have secondary chlorite which is extremely Rb-rich, associated with the mineralization. This chlorite and the associated altered basaltic host rocks give a Rb–Sr date of ≈1.98 Ga, and the associated galena Pb isotope data plot on the same array as those of other Pb–Zn deposits, the radiogenic intercept giving a date of ≈2.0 Ga. We interpret these data to indicate a craton-wide epigenetic fluid-infiltration event, which exploited the Maquassie Quartz Porphyry (MQP) as the aquifer and metal source.Sr isotopic results for the ore-zone gangue minerals show highly radiogenic 87Sr/86Sr ratios (>0.710) which support earlier models that the origin of radiogenic Sr isotopic composition in the calcite cements is the felsic tuffs (MQP) of the Ventersdorp Supergroup occurring at deeper levels within the basin. Relationships between δ18O and δ13C performed on carbonate cements within the aquifers are complex: the range in δ13C for some of the cements represents a mixture from two sources and with a progression from heavy carbon in the host to somewhat lighter carbon in the cements. Similarly, the lighter δ18O values have a narrow range indicative of rapid exchanges between hydrous fluid and rock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号