首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   120篇
  国内免费   170篇
测绘学   17篇
大气科学   322篇
地球物理   93篇
地质学   42篇
海洋学   42篇
天文学   73篇
综合类   10篇
自然地理   18篇
  2024年   5篇
  2023年   10篇
  2022年   8篇
  2021年   10篇
  2020年   8篇
  2019年   13篇
  2018年   11篇
  2017年   8篇
  2016年   15篇
  2015年   9篇
  2014年   15篇
  2013年   21篇
  2012年   18篇
  2011年   18篇
  2010年   17篇
  2009年   22篇
  2008年   19篇
  2007年   28篇
  2006年   26篇
  2005年   23篇
  2004年   30篇
  2003年   20篇
  2002年   20篇
  2001年   14篇
  2000年   52篇
  1999年   7篇
  1998年   23篇
  1997年   29篇
  1996年   15篇
  1995年   11篇
  1994年   16篇
  1993年   10篇
  1992年   15篇
  1991年   13篇
  1990年   10篇
  1989年   14篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
排序方式: 共有617条查询结果,搜索用时 109 毫秒
1.
2.
主要根据台湾海峡的实测海流资料,以夏、冬为代表季节,分析了台湾海峡2—3个纬向断面的海流结构,计算出各断面的海水通量。结果表明:夏季,台湾海峡中、北部海域各层的海流一般偏N向流动,N向的海水净通量为3.32×106m3·s-1;冬季,高温高盐的黑潮水和南海水由南向北经南部断面进入台湾海峡,其海水通量分别为1.69×106m3·s-1和0.59×106m3·s-1;而东海水由北向南通过北部断面进入台湾海峡,其海水通量为1.02×106m3·s-1,其中,有0.40×106m3·s-1的海水沿着福建和广东近岸流进南海,其余0.62×106m3·s-1的海水在台湾海峡北部混合后随同黑潮水和南海水流入东海。总之,流经台湾海峡的N向海水净通量为1.74×106m3·s-1。  相似文献   
3.
亚洲赤道地区大气动能的纬向传播   总被引:7,自引:1,他引:7  
基于 1980~ 1997年 85 0hPa逐日NCEP/NCAR再分析资料讨论了亚洲赤道地区 (0°~ 5°N)大气动能的纬向传播特征。结果表明 ,在亚洲季风区内 ,赤道地区大气动能 (K)的最强中心位于 75°~ 90°E ,次强中心在索马里急流区 (5 0°E附近 )。在 0°~ 5°N ,90°E以东 ,平均的大气动能扰动和赤道上经向风扰动主要起源于西太平洋 ,并向西经南海传播到孟加拉湾。而在孟加拉湾动能中心与索马里急流区之间 ,动能传播方向比较复杂。以上事实说明赤道地区东亚季风系统确实是存在的 ,与印度季风系统中扰动的传播方向不同 ,东亚季风系统中动能和经向风扰动在东西方向上主要受西太平洋的影响。在亚洲赤道季风区 ,这两个系统的交界处约在 95°~ 10 0°E附近 ,比过去界定的偏西 5~ 10个经度。  相似文献   
4.
冷暖事件对大气能量循环和纬向平均环流影响的模拟研究   总被引:1,自引:0,他引:1  
张韬  吴国雄  郭裕福 《气象学报》2002,60(5):513-526
利用中国科学院大气物理研究所大气科学与地球流体力学数值模拟国家重点实验室新发展的GOALS 5全球海 陆 气耦合模式研究了暖事件 (ElNi no)和冷事件 (LaNina)对大气能量循环和纬向平均环流的影响 ,并用观测资料进行了对比分析。结果表明 :对于纬向平均资料来说 ,冷、暖事件在热带和副热带地区的大气环流相关量的反相变化特征非常清晰 ,中高纬度地区并不明显。此外 ,还发现 ,暖事件时定常涡动的经向热通量的变化是北半球对流层热带外地区温度异常的主要原因 ,而瞬变波的影响则起抵消作用。冷事件时定常波和瞬变波相互抵消的局地特征也依然存在 ,但瞬变波的影响有所增强。  相似文献   
5.
分海洋和陆地两种情况来讨论IAP/LASG全球海-陆-气耦合系统模式(GOAL)四个版本的结果,并与观测资料进行对比分析。一些重要的大气变量包括表面空气温度,海平面气压和降水率用来评估GOALS模式模拟当代气候和气候变率的能力。总的来说,GOALS模式的四个版本都能够合理地再现观测到的平均气候态和季节变化的主要特征。同时评估也揭示了模式的一些缺陷。可以清楚地看到模拟的全球平均海平面气压的主要误差是在陆地上。陆地上表面空气温度模拟偏高主要是由于陆面过程的影响。值得注意的是降水率模拟偏低主要是在海洋上,而中高纬的陆地降水在北半球冬天却比观测偏高。 通过模式不同版本之间的相互比较研究,可以发现模式中太阳辐射日变化物理过程的引入明显地改善了表面空气温度的模拟,尤其是在中低纬度的陆地上。太阳辐射日变化的引入对热带陆地的降水和中高纬度的冬季降水也有较大改进。而且,由于使用了逐日通量距平交换方案(DFA),GOALS模式新版本模拟的海洋上的温度变率在中低纬度有了改善。 比较观测和模拟的年平均表面空气温度的标准差,可以发现GOALS模式四个版本都低估了海洋和陆地上的温度变率,文中还对影响观测和模拟温度变率差异的可能原因进行了探讨。  相似文献   
6.
利用低纬地磁子午链上H和D分量的分均值数据 ,分析了 2 0 0 0年 4月 6日磁暴期间磁扰变化的纬度效应 .主要特点是 :(1 )急始期间H分量急始跃变幅随磁纬降低而减小 ,且急始变幅的下降率随磁纬降低而逐渐增大 ;(2 )初相期间H分量第 2峰值的变幅和初相持续时间随磁纬降低而减小 ;(3)主相期间H分量迅速减小 ,并随纬度降低最大变幅明显增加 ;(4)恢复相H分量呈两阶段上升趋势 ,前一阶段迅速上升 ,后一阶段上升速度明显减小 .最后对这些磁扰变化的纬度效应与空间电流体系的密切关系作了讨论 .  相似文献   
7.
昆明城市气候水平空间分布特征   总被引:9,自引:8,他引:9  
以昆明城市为研究对象,对城市西南-东北剖线的实测资料比较研究,从气温、水汽压、相对湿度、风速、风向等方面分析了昆明城市气候特征、变化规律及城市热岛效应。研究表明:在昆明存在热岛效应,以夜间最为明显,其最强度效应可达5.0℃,出现时刻(3时)与国内外多数研究结果(傍晚)有所不同;昆明城市昼间呈现明显的干岛效应。所得结论可为探讨昆明城市气候特片和形成机制,城市环境污染防治及建筑规划、设计等提供依据。  相似文献   
8.
贵州省低纬山地气候变化趋势   总被引:2,自引:0,他引:2  
吉廷艳 《山地学报》2003,21(4):422-427
对贵州气温、降水、灾害指数等要素的气候变化分析表明:20世纪40年代前后贵州处于一个相对温暖时期(这一时期也是北半球大陆气温自1930~1960年代初的明显暖期中),1960~1970年代是一个相对较冷时段,但趋势变化曲线反应出贵州气温呈下降趋势(与全球气候变暖趋势相反),主要表现在春季和夏季变冷明显,秋季和冬季略有变暖;贵州降水趋于减少,主要反应为春季减少较为明显,夏、秋季变化不大,冬季呈增加趋势;各种灾害指数的趋势变化中,春季的倒春寒、夏季的洪涝趋于偏重,秋季的绵雨、冬季的低温和凝冻趋于偏轻,而春旱、夏旱和秋风变化不明显,但春旱存在明显的周期性变化特征;旱涝指数的小波分析指出贵州旱涝有两个比较明显的全域性周期变化,分别是32a和10a周期。  相似文献   
9.
李树菁 《中国地震》2003,19(1):77-83
地球为宇宙星体之一 ,地球上的大断裂有线性的 ,也有非线性的或环形的。由于视野不同 ,有时难以区分这两类断裂。在百公里量级内是线性的 ,在千公里量级内则表现为非线性或环形的一部分。以前的研究多以线性为主。目前 ,从断裂研究史上对此进行综述 ,将有利于对断裂研究的持续和发展。作者在 1 990年前后 ,对国家地震局的线性构造研究给予很大关注 ,查阅了大量世界上关于线性构造研究的文献 ,现在 ,虽然这方面的研究有了深入发展 ,但许多资料仍有价值。今汇而总之 ,给予发表 ,会对相关研究有所裨益。1 天体构造线的研究根据地球上的宇宙物…  相似文献   
10.
西太平洋副高活动与平流层QBO关系的研究   总被引:10,自引:1,他引:10       下载免费PDF全文
李崇银  龙振夏 《大气科学》1997,21(6):670-678
资料分析表明,西太平洋副高活动有准两年振荡特征,副高的相对强度和副高脊线的纬度位置都清楚地表现出这种振荡。而且分析还表明,平流层低层纬向风的垂直切变同西太平洋副高活动有关,东(西)风切变对应着脊线位置偏北的较强(弱)副高形势。平流层低层东(西)垂直切变在赤道对流层上部所引起的异常上升(下沉)运动,导致Hadley环流的异常加强(减弱)可能是平流层QBO影响西太平洋副高准两年振荡的重要机制。用IAP-GCM所作的数值模拟试验得到了同观测资料分析相一致的结果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号