首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
大气科学   3篇
自然地理   2篇
  2022年   3篇
  2020年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
基于2003—2019年MODIS Aqua Aerosol L2反演的新疆大气气溶胶光学厚度(Aerosol opt?ical depth,AOD)产品,选取中国气象局大气气溶胶光学特性观测网(Chinese aerosol optical property network,CAOPNET)乌鲁木齐地面观测站点CE-...  相似文献   
2.
基于激光雷达探测设备、风廓线雷达、探空以及常规地面探测设备,研究了乌鲁木齐2017年3月5—12日一次重污染过程气溶胶光学特性的垂直分布特征及重污染成因。结果表明:此次重污染过程中7—10日PM2.5日平均值分别为176、215.5、215.9μg/m3和176.3μg/m3,最高时刻达到364μg/m3;激光雷达探测结果表明污染物主要集中在600 m以下,且午后—傍晚阶段的消光系数是夜间的7倍左右;污染物的退偏振很小,结合探空湿度廓线得到混合层内相对湿度基本80%,说明气溶胶颗粒主要为水凝物的球形粒子。由风廓线雷达结果得到乌鲁木齐站附近500 m高度以下水平风速普遍低于2 m/s;从北到南地面5个加密气象站的小风频率依次为99%、100%、81%、48%和67%。在市中心高新区附近受城市建筑物的阻挡,整个污染过程中平均风速仅为0.66 m/s;靠近峡口的乌拉泊风速最大,平均风速达到2.3 m/s,重污染阶段7—9日的平均边界层高度为433 m,低的边界层高度和低风速是造成此次污染的主要原因。  相似文献   
3.
利用2017~2018年阿克达拉逐时臭氧浓度监测数据和同期气象观测资料,分析了阿克达拉近地面臭氧浓度的日変化和年季变化特征,并分析了臭氧浓度与气象条件之间的关系。结果表明:臭氧浓度日变化呈现单峰型,下午16点前后达到最高值,最高值分别为42.86 ppb和38.37 ppb;2017和2018年阿克达拉臭氧最高月分别出现在3月和2月,月平均臭氧浓度为49.37 ppb和37.94 ppb,最低月出现在12月,浓度为18.36 ppb和18.90 ppb;2017~2018年阿克达拉近地面臭氧浓度的季节变化规律为:春季>夏季>冬季>秋季;阿克达拉的主导风向是NW和E,夏季主导风向为NW,冬季则以偏东风为主;夏季受西北气流影响,阿克达拉西北方向的污染源对当地近地面臭氧浓度影响较大。  相似文献   
4.
利用2017—2019年中天山北坡城市群(乌鲁木齐市、昌吉市、石河子市、五家渠市)逐时大气污染物监测数据及气象数据,分析了大气污染物年内变化和污染天气类型特征。结果表明:(1) 中天山北坡4座城市6类大气污染物中PM2.5超标日数最多(年均94~104 d),年均浓度介于64~73 μg·m-3,且五家渠市>乌鲁木齐市>石河子市>昌吉市。采暖期PM2.5浓度在100~118 μg·m-3之间,是非采暖期的4.00~5.00倍,靠近山前地带的城市PM2.5浓度日变化大体呈现“双峰双谷型”。(2) 4座城市污染天气类型主要分为静稳型、沙尘型和特殊型,其中静稳型占86.2%~93.6%、沙尘型占5.8%~13.2%。静稳型污染天气多出现在冬季,沙尘型主要出现在春、秋季节。静稳型污染天气中Ⅴ-Ⅵ级污染级别占比45.8%~56.6%,沙尘型污染天气中Ⅴ-Ⅵ级污染级别占比14.9%~29.4%。(3) 静稳型和沙尘型污染天气下PM2.5和PM10浓度都存在显著的线性相关,前者PM10浓度是PM2.5的1.26倍,而后者达3.16倍,此倍数可以作为区分静稳型和沙尘型污染天气的判据。  相似文献   
5.
基于2015—2021年近7 a乌鲁木齐冬季逐小时地面常规观测资料和空气质量数据,并结合ERA5再分析资料对重污染日PM2.5不同增长类型的污染特征、环流形势以及气象条件进行综合分析。研究发现,近7 a乌鲁木齐冬季PM2.5重污染及以上级别的比例由41.2 %降至8.6 %,PM2.5重污染天数由63 d降至13 d,超过70%重污染日PM2.5浓度增长分布在60 μg?m-3以内。依据PM2.5增长类型判别方法,近7 a乌鲁木齐冬季重污染日以缓慢型增长为主。对比分析爆发型增长和缓慢型增长的天气背景形势表明,两种增长类型在欧亚范围内500 hPa高空形势上均主要受西北或偏西气流影响,爆发型增长的高压脊势力较强,乌鲁木齐处于高压中心后部且气压梯度显著;而缓慢型增长的高压脊较为平直,乌鲁木齐位于高压后部的均压场控制下,气压梯度相对较弱。对比两种类型边界层内逆温厚度和强度发现,爆发型增长在925~700hPa之间的逆温层平均厚度明显大于缓慢型增长,前者逆温强度达到1.8 ℃?(100m)-1,明显高于缓慢型增长的1.2 ℃?(100m)-1,表明造成两种PM2.5不同类型增长与边界层内的逆温垂直特征分布结构存在密切联系。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号