首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
地球物理   3篇
地质学   5篇
海洋学   22篇
自然地理   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
This paper presents a computational model for mapping the regional 3D distribution in which seafloor gas hydrates would be stable, that is carried out in a Geographical Information System (GIS) environment. The construction of the model is comprised of three primary steps, namely: (1) the construction of surfaces for the various variables based on available 3D data (seafloor temperature, geothermal gradient and depth-pressure); (2) the calculation of the gas function equilibrium functions for the various hydrocarbon compositions reported from hydrate and sediment samples; and (3) the calculation of the thickness of the hydrate stability zone. The solution is based on a transcendental function, which is solved iteratively in a GIS environment.The model has been applied in the northernmost continental slope of the Gulf of Cadiz, an area where an abundant supply for hydrate formation, such as extensive hydrocarbon seeps, diapirs and fault structures, is combined with deep undercurrents and a complex seafloor morphology. In the Gulf of Cadiz, the model depicts the distribution of the base of the gas hydrate stability zone for both biogenic and thermogenic gas compositions, and explains the geometry and distribution of geological structures derived from gas venting in the Tasyo Field (Gulf of Cadiz) and the generation of BSR levels on the upper continental slope.  相似文献   
2.
The Gulf of Cádiz area has been extensively surveyed in recent years and several gas-related fluid escape seafloor structures have been identified. In this study, gravity cores, collected during the ANASTASYA/00 and ANASTASYA/01 cruises, on mud volcanoes, hemipelagic sediments and dredged material from diapiric structures, have been studied. A comparative mineralogical analysis by XRD and SEM of samples from different areas has been performed in order to determine whether there is a characteristic mineralogy related to these fluid escape structures, and also to determine the origin of the mud matrix and constrain the depth of the parent units. The mineralogical analysis reflects the different origins of the different units described in the cores: hemipelagic material of the slope, clays that underlie the mud volcanoes and are discharged at the sea bottom surface, and authigenic and diagenetic minerals possibly involved in the anaerobic oxidation of methane in the mud volcano sediments.  相似文献   
3.
We study the mineralogical changes suffered by specimens of natural miocene red and green continental sandstones (from Pozuelos Formation and Tiomayo Formation) cropping out in the Argentine Puna that increase their bulk magnetic susceptibility and change color when thermally treated. We hypothesize that on heating siderite, which is present in small quantities as cement in the studied sandstones, would oxidize and decompose into maghemite and/or magnetite. Subsequent heating to higher temperatures sometimes would bring about the conversion of maghemite and/or magnetite to hematite. Mössbauer spectroscopy proved to be a very valuable tool for the determination of the presence of siderite in small amounts in the studied samples. The present results show that further work is needed in order to fully understand the mineralogical changes suffered by continental sandstones during heating. The characterization of such changes occurred during laboratory routines is relevant, since they can help to better understand natural processes.  相似文献   
4.
New swath bathymetric, multichannel seismic and magnetic data reveal the complexity of the intersection between the extinct West Scotia Ridge (WSR) and the Shackleton Fracture Zone (SFZ), a first-order NW-SE trending high-relief ridge cutting across the Drake Passage. The SFZ is composed of shallow, ridge segments and depressions, largely parallel to the fracture zone with an `en echelon' pattern in plan view. These features are bounded by tectonic lineaments, interpreted as faults. The axial valley of the spreading center intersects the fracture zone in a complex area of deformation, where N120° E lineaments and E–W faults anastomose on both sides of the intersection. The fracture zone developed within an extensional regime, which facilitated the formation of oceanic transverse ridges parallel to the fracture zone and depressions attributed to pull-apart basins, bounded by normal and strike-slip faults.On the multichannel seismic (MCS) profiles, the igneous crust is well stratified, with numerous discontinuous high-amplitude reflectors and many irregular diffractions at the top, and a thicker layer below. The latter has sparse and weak reflectors, although it locally contains strong, dipping reflections. A bright, slightly undulating reflector observed below the spreading center axial valley at about 0.75 s (twt) depth in the igneous crust is interpreted as an indication of the relict axial magma chamber. Deep, high-amplitude subhorizontal and slightly dipping reflections are observed between 1.8 and 3.2 s (twt) below sea floor, but are preferentially located at about 2.8–3.0 s (twt) depth. Where these reflections are more continuous they may represent the Mohorovicic seismic discontinuity. More locally, short (2–3 km long), very high-amplitude reflections observed at 3.6 and 4.3 s (twt) depth below sea floor are attributed to an interlayered upper mantle transition zone. The MCS profiles also show a pattern of regularly spaced, steep-inclined reflectors, which cut across layers 2 and 3 of the oceanic crust. These reflectors are attributed to deformation under a transpressional regime that developed along the SFZ, shortly after spreading ceased at the WSR. Magnetic anomalies 5 to 5 E may be confidently identified on the flanks of the WSR. Our spreading model assumes slow rates (ca. 10–20 mm/yr), with slight asymmetries favoring the southeastern flank between 5C and 5, and the northwestern flank between 5 and extinction. The spreading rate asymmetry means that accretion was slower during formation of the steeper, shallower, southeastern flank than of the northwestern flank.  相似文献   
5.
Integrating novel and published swath bathymetry (3,980 km2), as well as chirp and high-resolution 2D seismic reflection profiles (2,190 km), this study presents the mapping of 436 pockmarks at water depths varying widely between 370 and 1,020 m on either side of the Strait of Gibraltar. On the Atlantic side in the south-eastern Gulf of Cádiz near the Camarinal Sill, 198 newly discovered pockmarks occur in three well localized and separated fields: on the upper slope (n=14), in the main channel of the Mediterranean outflow water (MOW, n=160), and on the huge contourite levee of the MOW main channel (n=24) near the well-known TASYO field. These pockmarks vary in diameter from 60 to 919 m, and are sub-circular to irregularly elongated or lobate in shape. Their slope angles on average range from 3° to 25°. On the Mediterranean side of the strait on the Ceuta Drift of the western Alborán Basin, where pockmarks were already known to occur, 238 pockmarks were identified and grouped into three interconnected fields, i.e. a northern (n=34), a central (n=61) and a southern field (n=143). In the latter two fields the pockmarks are mainly sub-circular, ranging from 130 to 400 m in diameter with slope angles averaging 1.5° to 15°. In the northern sector, by contrast, they are elongated up to 1,430 m, probably reflecting MOW activity. Based on seismo-stratigraphic interpretation, it is inferred that most pockmarks formed during and shortly after the last glacial sea-level lowstand, as they are related to the final erosional discontinuity sealed by Holocene transgressive deposits. Combining these findings with other existing knowledge, it is proposed that pockmark formation on either side of the Strait of Gibraltar resulted from gas and/or sediment pore-water venting from overpressured shallow gas reservoirs entrapped in coarse-grained contourites of levee deposits and Pleistocene palaeochannel infillings. Venting was either triggered or promoted by hydraulic pumping associated with topographically forced internal waves. This mechanism is analogous to the long-known effect of tidal pumping on the dynamics of unit pockmarks observed along the Norwegian continental margin.  相似文献   
6.
Multibeam bathymetry, high resolution multi-channel, and very high resolution single-channel (3.5 kHz) seismic records were used to depict the complex geomorphology that defines the Galicia Bank region (Atlantic, NW Iberian Peninsula). This region (≈620–5,000 m water depth) is characterized by a great variety of features: structural features (scarps, highs, valleys, fold bulges), fluid dynamics-related features (structural undulations and collapse craters), mass-movement features (gullies, channels, mass-flow deposits, slope-lobe complexes, and mass-transport deposits), bottom-current features (moats, furrows, abraded surface, sediment waves, and drifts), (hemi)pelagic features, mixed features (abraded surfaces associated to mixed sediments) and bioconstructions. These features represent architectural elements of four sedimentary systems: slope apron, contouritic, current-controlled (hemi)pelagic, and (hemi)pelagic. These systems are a reflection of different sedimentary processes: downslope (mass transport, mass flows, turbidity flows), alongslope (bottom currents of Mediterranean Outflow Water, Labrador Sea Water, North Atlantic Deep Water, and Lower Deep Water), vertical settling, and the interplay between them. The architectural and sediment dynamic complexities, for their part, are conditioned by the morphostructural complexity of the region, whose structures (exposed scarps and highs) favor multiple submarine sediment sources, affect the type and evolution of the mass-movement processes, and interact with different water masses. This region and similar sedimentary environments far from the continental sediment sources, as seamounts, are ideal zones for carrying out submarine source-to-sink studies, and can represent areas subject to hazards, both geologic and oceanographic in origin.  相似文献   
7.
Multibeam echosounder data and TOPAS seismic reflection profiles collected during the AntPac 1997, Scan 2004, and Scan 2008 cruises aboard the RV Hespérides reveal a host of surficial geomorphological features as yet poorly investigated in the Scan Basin, south-central Scotia Sea. This area represents one of the deep gateways between the Weddell Sea and the Scotia Sea, since it enables the northward flow of a branch of the Weddell Sea Deep Water (WSDW). Analysis of the data identifies numerous elongated depressions interpreted as furrows in the southernmost sector of the basin. These furrows show two main trends, i.e., either N?CNNW parallel to, or NE oblique to regional bathymetric contours. These trends plausibly reflect a tectonic influence on the bottom-flow distribution, conditioned by a set of recent, conjugate strike-slip faults that developed on the seafloor under dominant NNE?CSSW compression and orthogonal extension. The furrows exhibit distinct geomorphological patterns at either side of the basin, which can be related to west?Ceast asymmetry in the WSDW flow direction. Consistent with existing knowledge of regional WSDW dynamics, northward WSDW overflows would be channeled along the western part of the basin at higher bottom-current velocities, thereby generating more erosional-type furrows that are straighter, more elongated, and have more abrupt sidewalls than their eastern counterparts. In contrast, weaker southward WSDW would flow along the eastern part of the basin, resulting in more depositional-type furrows that are more curved, less elongated, and have gentler sidewalls.  相似文献   
8.
9.
High-resolution single channel and multichannel seismic reflection profiles and multibeam bathymetric and backscatter data collected during several cruises over the period 1999 to 2007 have enabled characterising not only the seabed morphology but also the subsurface structural elements of the Yuma, Ginsburg, Jesús Baraza and Tasyo mud volcanoes (MVs) in the Gulf of Cádiz at 1,050–1,250 m water depth. These MVs vary strongly in morphology and size. The data reveal elongated cone-shaped edifices, rimmed depressions, and scarps interpreted as flank failures developed by collapse, faulting, compaction and gravitational processes. MV architecture is characterised by both extrusive and intrusive complexes, comprising stacked edifices (including seabed cones and up to four buried bicones) underlain by chaotic vertical zones and downward-tapering cones suggesting feeder systems. These intrusive structures represent the upper layer of the feeder system linking the fluid mud sources with the constructional edifices. The overall architecture is interpreted to be the result of successive events of mud extrusion and outbuilding alternating with periods of dormancy. Each mud extrusion phase is connected with the development of an edifice, represented by a seabed cone or a buried bicone. In all four MVs, the stacked edifices and the intrusive complexes penetrate Late Miocene–Quaternary units and are rooted in the Gulf of Cádiz wedge emplaced during the late Tortonian. Major phases of mud extrusion and outbuilding took place since the Late Pliocene, even though in the Yuma and Jesús Baraza MVs mud volcanism started in the Late Miocene shortly after the emplacement of the Gulf of Cádiz wedge. This study shows that fluid venting in the eastern sector of the Gulf of Cádiz promoted the outbuilding of large long-lived mud volcanoes active since the Late Miocene, and which have been reactivated repeatedly until recent times.  相似文献   
10.
The lateral ending of the South Shetland Trench is analysed on the basis of swath bathymetry and multichannel seismic profiles in order to establish the tectonic and stratigraphic features of the transition from an northeastward active to a southwestward passive margin style. This trench is associated with a lithospheric-scale thrust accommodating the internal deformation in the Antarctic Plate and its lateral end represents the tip-line of this thrust. The evolutionary model deduced from the structures and the stratigraphic record includes a first stage with a compressional deformation, predating the end of the subduction in the southwestern part of the study area that produced reverse faults in the oceanic crust during the Tortonian. The second stage occurred during the Messinian and includes distributed compressional deformation around the tip-line of the basal detachment, originating a high at the base of the slope and the collapse of the now inactive accretionary prism of the passive margin. The initial subduction of the high at the base of the slope induced the deformation of the accretionary prism and the formation of another high in the shelf—the Shelf Transition High. The third stage, from the Early Pliocene to the present-day, includes the active compressional deformation of the shelf and the base-of-slope around the tip-line of the basal detachment, while extensional deformations are active in the outer swell of the trench.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号