首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
大气科学   1篇
地球物理   2篇
地质学   1篇
海洋学   2篇
自然地理   4篇
  2018年   2篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有10条查询结果,搜索用时 662 毫秒
1
1.
Water column concentrations and benthic fluxes of dissolved inorganic nitrogen (DIN) and oxygen (DO) were measured in the Gulf of St. Lawrence and the Upper and Lower St. Lawrence Estuary (USLE and LSLE, respectively) to assess the nitrogen (N) budget in the St. Lawrence (SL) system, as well as to elucidate the impact of bottom water hypoxia on fixed-N removal in the LSLE. A severe nitrate deficit, with respect to ambient phosphate concentrations (N*∼−10 μmol L−1), was observed within and in the vicinity of the hypoxic bottom water of the LSLE. Given that DO concentrations in the water column have remained above 50 μmol L−1, nitrate reduction in suboxic sediments, rather than in the water column, is most likely responsible for the removal of fixed N from the SL system. Net nitrate fluxes into the sediments, derived from pore water nitrate concentration gradients, ranged from 190 μmol m−2 d−1 in the hypoxic western LSLE to 100 μmol m−2 d−1 in the Gulf. The average total benthic nitrate reduction rate for the Laurentian Channel (LC) is on the order of 690 μmol m−2 d−1, with coupled nitrification-nitrate reduction accounting for more than 70%. Using average nitrate reduction rates derived from the observed water column nitrate deficit, the annual fixed-N elimination within the three main channels of the Gulf of St. Lawrence and LSLE was estimated at 411 × 106 t N, yielding an almost balanced N budget for the SL marine system.  相似文献   
2.
Lac Saint-Augustin is an urban lake located on the outskirts of Quebec City, one of North America’s oldest cities. Anthropogenic inputs from land clearing, agriculture, highway development and urbanization in the surrounding catchment have resulted in strong impacts on the limnology of the lake throughout the past three centuries. In recent years, this lake has experienced severe eutrophication, including persistent cyanobacterial blooms. In winter 2011, a sediment core was extracted from the deepest area of the lake. A detailed paleopigment analysis was used to assess eutrophication processes in the lake and to determine the timing and appearance of cyanobacterial blooms and their subsequent variability. Extracted chlorophyll a, its degradation products and 11 carotenoid pigments were identified and quantified via reverse-phase high performance liquid chromatography to examine relative changes in the phytoplankton. The results revealed large variations in the phytoplankton community structure of Lac Saint-Augustin over the past 356 years. Chlorophyll a concentrations per unit organic matter (OM) increased significantly from the base of the core to present day, rising more than 15-fold from 18.4 µg (g OM)?1 at the base of the core to 287 µg (g OM)?1 in the most recent strata. Biostratigraphical analysis revealed three major periods of enrichment, with episodes of cyanobacterial abundance from the 1890s onwards. The greatest changes occurred in the most recent period (from the 1960s to the present) relative to earlier periods, with pigment increases for all phytoplankton groups. The cyanobacterial pigments canthaxanthin, echinenone and zeaxanthin (also a marker for green algae) showed concentrations in the surface sediments that were significantly above values at the bottom of the core, and these differences were large, even giving consideration to the lesser pigment degradation near the surface. Overall, the results indicate that cyanobacterial blooms are not a recent feature of Lac Saint-Augustin but began to occur soon after catchment modification 150 years ago. The pigment records also imply that cyanobacterial and associated algal populations have risen to unprecedented levels over the last few decades of ongoing development of the Lac Saint-Augustin catchment. This study highlights the utility of multiple pigment analysis of lake sediments for identifying the timing and magnitude of anthropogenic impacts.  相似文献   
3.
Major pathways of biogenic carbon (C) flow are resolved for the planktonic food web of the flaw lead polynya system of the Amundsen Gulf (southeast Beaufort Sea, Arctic Ocean) in spring-summer 2008. This period was relevant to study the effect of climate change on Arctic marine ecosystems as it was characterized by unusually low ice cover and warm sea surface temperature. Our synthesis relied on a mass balance estimate of gross primary production (GPP) of 52.5 ± 12.5 g C m−2 calculated using the drawdown of nitrate and dissolved inorganic C, and a seasonal f-ratio of 0.64. Based on chlorophyll a biomass, we estimated that GPP was dominated by phytoplankton (93.6%) over ice algae (6.4%) and by large cells (>5 μm, 67.6%) over small cells (<5 μm, 32.4%). Ancillary in situ data on bacterial production, zooplankton biomass and respiration, herbivory, bacterivory, vertical particle fluxes, pools of particulate and dissolved organic carbon (POC, DOC), net community production (NCP), as well as selected variables from the literature were used to evaluate the fate of size-fractionated GPP in the ecosystem. The structure and functioning of the planktonic food web was elucidated through inverse analysis using the mean GPP and the 95% confidence limits of every other field measurement as lower and upper constraints. The model computed a net primary production of 49.2 g C m−2, which was directly channeled toward dominant calanoid copepods (i.e. Calanus hyperboreus 20%, Calanus glacialis 10%, and Metridia longa 10%), other mesozooplankton (12%), microzooplankton (14%), detrital POC (18%), and DOC (16%). Bacteria required 29.9 g C m−2, a demand met entirely by the DOC derived from local biological activities. The ultimate C outflow comprised respiration fluxes (82% of the initial GPP), a small sedimentation (3%), and a modest residual C flow (15%) resulting from NCP, dilution and accumulation. The sinking C flux at the model limit depth (395 m) supplied 60% of the estimated benthic C demand (2.8 g C m−2), suggesting that the benthos relied partly on other C sources within the bottom boundary layer to fuel its activity. In summary, our results illustrate that the ongoing decline in Arctic sea ice promotes the growth of pelagic communities in the Amundsen Gulf, which benefited from a ∼80% increase in GPP in spring-summer 2008 when compared to 2004 – a year of average ice conditions and relatively low GPP. However, 53% of the secondary production was generated within the microbial food web, the net ecological efficiency of zooplankton populations was not particularly high (13.4%), and the quantity of biogenic C available for trophic export remained low (6.6 g C m−2). Hence it is unlikely that the increase in lower food web productivity, such as the one observed in our study, could support new harvestable fishery resources in the offshore Beaufort Sea domain.  相似文献   
4.
The nitrogen stable isotopic signature (δ15N) of sediment is a powerful tool to understand eutrophication history, but its interpretation remains a challenge. In a large-scale comparative approach, we identified the most important drivers influencing surface sediments δ15N of 65 lakes from two regions of Canada using proxies that reflect watershed nitrogen (N) sources, internal lake microbial cycling and productivity. Across regions, we found that water column total nitrogen (TN),  %N in the sediments and lake morphometric variables were the best predictors of sedimentary δ15N, explaining 66 % of its variation. Significant relationships were also found between sediment δ15N and human-derived N load ( \( R_{{{\text{adj}} .}}^{2} \)  = 0.23, p < 0.001), the latter being a strong predictor of TN ( \( R_{{{\text{adj}} .}}^{2} \)  = 0.68, p < 0.001). Despite a relatively strong overall relationship, variation partitioning revealed an interesting difference in the dominant variable that influenced regional δ15N. Alberta lake sedimentary δ15N signature was dominated by human derived N load. In contrast, internal processing appeared to be more important in Quebec lakes, where sediment δ15N was best explained by  %N in the sediments and lake volume. Overall, our findings support the use of δ15N in paleolimnological investigations to reconstruct changing N sources to lakes but also highlight that regions may have distinctive drivers. Interpretations of sediment δ15N are likely to be strongest when multiple lines of evidence are employed and when placed in a regional context.  相似文献   
5.
This is the first study to investigate the magnitude and distribution of N2O concentrations along the Line P oceanographic transect in the Northeast (NE) subarctic Pacific Ocean. Concentrations of N2O were measured from the surface to 600 m depth at five stations between 126°W and 145°W. Although nitrification within the mixed layer may produce some N2O, we conclude that mixing and diffusion processes, which vertically transport N2O upwards from below the mixed layer, are the primary sources of N2O to the surface waters of the NE subarctic Pacific Ocean. Below the mixed layer, nitrification appears to be the dominant source of N2O, and based on correlations of excess N2O (ΔN2O) versus apparent oxygen utilization and NO3 ? concentrations, we estimated that the N2O yield from nitrification was approximately 0.028 to 0.040%. The longitudinal distributions of N2O concentrations below the mixed layer were variable and we consider the potential role that different transiting water masses may play in contributing to this variability. Finally, we estimated that the regional average sea-to-air N2O flux was 4.37 mol of N2O km?2 d?1, a value which is approximately four times that of the global average seawater-to-air flux rate. Our N2O yield estimates are within the range of those expected under oxic conditions, leading us to conclude that decreasing dissolved O2 concentrations in the NE subarctic Pacific Ocean, and the water masses that influence this region, over the past 50 years have yet to produce a substantial increase in N2O production. Given the expectation that dissolved O2 concentrations in the subarctic Pacific Ocean will continue to decrease during this century, this study has provided an important baseline from which future studies will be able to track changes in seawater N2O concentrations and fluxes to the atmosphere.

[Traduit par la rédaction] La présente étude est la première à s'intéresser à la valeur et à la distribution des concentrations de N2O le long du transect océanographique de la ligne P dans le Pacifique Nord-Est subarctique. Les concentrations de N2O ont été mesurées de la surface jusqu’à une profondeur de 600 m à cinq stations entre 126°O et 145°O. Bien que la nitrification à l'intérieur de la couche de mélange puisse produire du N2O, nous concluons que le mélange et les processus de diffusion, qui transportent verticalement le N2O vers le haut à partir d'en dessous de la couche de mélange, sont les sources principales de N2O pour les eaux de surface du Pacifique Nord-Est subarctique. En dessous de la couche mélange, la nitrification semble être la principale source de N2O, et d'après les corrélations de l'excès de N2O (ΔN2O) par rapport à l'utilisation apparente d'oxygène et aux concentrations de NO3 ?, nous avons estimé que le rendement en N2O de la nitrification était approximativement de 0,028 à 0,040%. Les distributions longitudinales des concentrations de N2O en dessous de la couche de mélange étaient variables et nous considérons le rôle possible que des différentes masses d'eau transitoires peuvent avoir à jouer dans cette variabilité. Finalement, nous avons estimé que la moyenne régionale du flux mer–air de N2O était de 4,37 moles de N2O km?2 j?1, une valeur qui est environ quatre fois celle du taux planétaire moyen du flux eau de mer–air. Nos estimations du rendement en N2O sont de l'ordre de celles attendues dans des conditions oxyques, ce qui nous amène à conclure que la diminution des concentrations d'oxygène dissout dans le Pacifique Nord–Est subarctique, et dans les masses d'eau qui influencent cette région, au cours des cinquante dernières années ont encore à produire une augmentation substantielle de production de N2O. Étant donné qu'on s'attend à ce que les concentrations d'oxygène dissout dans le Pacifique subarctique continuent à diminuer durant le présent siècle, cette étude a fourni une importante base de référence à partir de laquelle de futures études pourront suivre les changements dans les concentrations de N2O dans l'eau de mer et dans ses flux vers l'atmosphère.  相似文献   
6.
Declining water quality in reservoirs is of growing concern in many regions, yet there is still little understanding of long-term water quality trends in these systems. Across the landscape, reservoirs have diverse origins, functions, and operational strategies. In temperate environments, winter water-level drawdown is a common operational practice in reservoirs but the long-term impacts of this hydrological modification has not been extensively studied. We paired a comparative, pre-dam-to-contemporary study (i.e. a top–bottom design) of 12 reservoirs with a detailed paleolimnological study of a focal lake to generate quantitative insights into the relative effect of hydrological changes vs. landscape and climatic drivers on water quality. The focal reservoir, Grand Lac Saint-François, is of relatively similar morphometry, geography, and limnology to our other sites, and has experienced annual winter water-level drawdown of?~?5 m since it was dammed approximately 100 years ago. Based on our top–bottom analysis, we did not find strong correlations between long-term changes in water quality (i.e. diatom-inferred TP estimates) and winter water-level drawdown amplitudes. Instead, reservoir morphometry and watershed characteristics (i.e. geography, maximum depth, and cropland areas) appeared to be stronger drivers of trends across the region. From the detailed paleolimnological analysis, we found that sedimentary pigments and DI-TP concentrations significantly increased over the last century based on Mann–Kendall trend analyses. Breakpoint analyses showed that changes in biological-proxy trends, as well as the sedimentology (i.e. lithology and accumulations rates), coincided with dam construction and the onset of water level regulation. However, given the high variability in metrics and the extent of water level monitoring records, we were unable to quantitatively associate the impacts of drawdown with water quality trends at Grand Lac Saint-François. Conversely, we did find that watershed nutrient surpluses from livestock farming, and warming temperatures were significant explanatory variables of water quality metrics.  相似文献   
7.
Perennial pools are common natural features of peatlands, and their hydrological functioning and turnover may be important for carbon fluxes, aquatic ecology, and downstream water quality. Peatland restoration methods such as ditch blocking result in many new pools. However, little is known about the hydrological function of either pool type. We monitored six natural and six artificial pools on a Scottish blanket peatland. Pool water levels were more variable in all seasons in artificial pools having greater water level increases and faster recession responses to storms than natural pools. Pools overflowed by a median of 9 and 54 times pool volume per year for natural and artificial pools, respectively, but this varied widely because some large pools had small upslope catchments and vice versa. Mean peat water‐table depths were similar between natural and artificial pool sites but much more variable over time at the artificial pool site, possibly due to a lower bulk specific yield across this site. Pool levels and pool‐level fluctuations were not the same as those of local water tables in the adjacent peat. Pool‐level time series were much smoother, with more damped rainfall or recession responses than those for peat water tables. There were strong hydraulic gradients between the peat and pools, with absolute water tables often being 20–30 cm higher or lower than water levels in pools only 1–4 m away. However, as peat hydraulic conductivity was very low (median of 1.5 × 10?5 and 1.4 × 10?6 cm s?1 at 30 and 50 cm depths at the natural pool site), there was little deep subsurface flow interaction. We conclude that (a) for peat restoration projects, a larger total pool surface area is likely to result in smaller flood peaks downstream, at least during summer months, because peatland bulk specific yield will be greater; and (b) surface and near‐surface connectivity during storm events and topographic context, rather than pool size alone, must be taken into account in future peatland pool and stream chemistry studies.  相似文献   
8.
The Sacramento-San Joaquin Delta is both an important environmental resource and a critical link in the water supply system for California. Concern for the adequacy of Delta water supplies increases with growing population and environmental maintenance needs and with the hydroclimatic uncertainty of global warming. Reconstructed or unimpaired discharges for Delta tributary areas are analyzed for trend and for changes in the seasonal regime of Delta inflows. Nonparametric tests indicate the absence of trend for annual inflows, but the low inflow months of September and October display increasing trends that are statistically significant. Additional changes in the Delta inflow regime are evident when inflow volumes are expressed relative to annual inflow. Decreasing trends in the spring fraction of annual total inflows and in the monthly fractions for April and May are statistically significant. March displays a significant increasing trend in the monthly fraction of inflow. The emerging decadal changes in monthly inflows have practical ramifications for water managers in the Delta. [Key words: Sacramento-San Joaquin Delta, hydroclimatology, climate change.]  相似文献   
9.
Arias intensity, Ia, has been identified as an efficient intensity measure for the estimation of earthquake‐induced losses. In this paper, a new model for the prediction of Arias intensity, which incorporates nonlinear site response through the use of the average shear‐wave velocity and a heteroskedastic variance structure, is proposed. In order to estimate the effects of ground motions on spatially‐distributed systems, it is important to take into account the spatial correlation of the intensity measure. However, existing loss‐estimation models, which use Ia as an input, do not take this aspect of the ground motion into account. Therefore, the potential to model the spatial correlation of Arias intensity is also investigated. The empirical predictive model is developed using recordings from the Pacific Earthquake Engineering Research Center Next Generation of Attenuation database whereas the model for spatial correlation makes use of the well‐recorded events from this database, that is the Northridge and Chi‐Chi earthquakes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
10.
The mineralogy and isotopic compositions of subglacially precipitated carbonate crusts (SPCCs) provide information on conditions and processes beneath former glaciers and ice sheets. Here we describe SPCCs formed on gneissic bedrock at the bed of the Laurentide Ice Sheet (LIS) during the last glacial maximum on central Baffin Island. Geochemical data indicate that the Ca in the crusts was likely derived from the subglacial chemical weathering Ca-bearing minerals in the local bedrock. C and Sr isotopic analyses reveal that the C in the calcite was derived predominantly from older plant debris. The δ18O values of the SPCCs suggest that these crusts formed in isotopic equilibrium with basal ice LIS preserved in the Barnes Ice Cap (BIC). Columnar crystal fabric and the predominance of sparite over micrite in the SPCCs are indicative of carbonate precipitation under open-system conditions. However, the mean δ18O value of the calcite crusts is ~ 10‰ higher than those of primary LIS ice preserved in the BIC, demonstrating that SPCCs record the isotopic composition of only basal ice. Palynomorph assemblages preserved within the calcite and basal BIC ice include species last endemic to the Arctic in the early Tertiary. The source of these palynomorphs remains enigmatic.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号