首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
地球物理   4篇
地质学   4篇
海洋学   1篇
天文学   7篇
  2021年   1篇
  2016年   1篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  1992年   1篇
排序方式: 共有16条查询结果,搜索用时 93 毫秒
1.
2.

Results from a new series of experiments on the geophysically important issue of spontaneous emission of internal gravity waves during unsteady interactions of vortical structures are presented. Vortex dipoles are a common element of a quasi-two-dimensional turbulent flow. Vortex dipoles perform translational motion and can collide with other vortices. During collision events the flow is unsteady and unbalanced and a further adjustment process associated with these events can therefore result in the spontaneous emission of gravity waves. Our laboratory experiments demonstrate that gravity waves are emitted when two translating vortex dipoles interact (collide) in a layered fluid, in accord with the current theoretical results. The emission was evident both in a two-layer system and in a fluid with a linear distribution of density with depth. The waves were generated during the period of deceleration of the secondary dipoles which constitute a vortex quadrupole emerging immediately after the collision of the primary dipoles.  相似文献   
3.
The goals of the TREK experiment, now in place on the MIR Space Station, are to resolve and measure the composition of both odd-Z and even-Z cosmic-ray nuclei up to uranium, to measure the isotopic composition of Fe-group nuclei, and to search for transuranic nucleic and exotic particles such as strangelets. To collect tracks of ultraheavy cosmic rays, exterior panels holding an array of BP-1 phosphate glass 1.2m2 in area and 16 plates thick are now mounted outside the Kvant-2 module on MIR. Heaters and relays regulate the temperature of the glass at 25°±5°C. The detectors will record 103 cosmic-ray tracks withZ50 during 2.5 years. An interior panel consisting of an array 0.09 m2 in area and 32 plates thick and mounted on the inside wall of the Soyuz spacecraft (attached to the Space Station) will collect tracks of about 13000 Fe and 500 Ni nuclei.  相似文献   
4.
Afanasyev  D. F.  Akatov  V. V. 《Oceanology》2021,61(2):244-253
Oceanology - Field observations were applied to study the macrophytobenthos of the Abrau Peninsula of the Black Sea and the effect of the two most common and largest species of brown algae of the...  相似文献   
5.
Hydrothermal alteration of kimberlite by convective flows of external water   总被引:1,自引:0,他引:1  
Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130–400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. Large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe is narrower leading to faster cooling. These predictions are consistent with fresh olivine and serpentine distribution in the Diavik A418 kimberlite pipe, (NWT, Canada) and with features of kimberlites of the Yakutian province in Russia affected by influx of ground water brines. Fast reactions and increases in the volume of solid products compared to the reactants result in self-sealing and low water–rock ratios (estimated at <0.2). Such low water–rock ratios result in only small changes in stable isotope compositions; for example, δO18 is predicted only to change slightly from mantle values. The model supports alteration of kimberlites predominantly by interactions with external non-magmatic fluids.  相似文献   
6.
On 17 January 2010, STEREO-B observed in extreme ultraviolet (EUV) and white light a large-scale dome-shaped expanding coronal transient with perfectly connected off-limb and on-disk signatures. Veronig et al. (Astrophys. J. Lett. 716, L57, 2010) concluded that the dome was formed by a weak shock wave. We have revealed two EUV components, one of which corresponded to this transient. All of its properties found from EUV, white light, and a metric type II burst match expectations for a freely expanding coronal shock wave, including correspondence with the fast-mode speed distribution, while the transient sweeping over the solar surface had a speed typical of EUV waves. The shock wave was presumably excited by an abrupt filament eruption. Both a weak shock approximation and a power-law fit match kinematics of the transient near the Sun. Moreover, the power-law fit matches the expansion of the CME leading edge up to 24 solar radii. The second, quasi-stationary EUV component near the dimming was presumably associated with a stretched CME structure; no indications of opening magnetic fields have been detected far from the eruption region.  相似文献   
7.
The propagation of a fast magnetoacoustic shock wave the magnetosphere of a solar active region is considered the nonlinear geometrical acoustics approximation. The magnetic field is modeled as a subphotospheric magnetic dipole embedded in the radial field of the quiet corona. The initial parameters of the wave are specified at a spherical surface in the depths of the active region. The wave propagates asymmetrically and is reflected from regions of the strong magnetic field, which results in the radiation of the wave energy predominantly upwards. Substantial gradients in the Alfvén speed facilitate appreciable growth in the wave intensity. Non-linear damping of the wave and divergence of the wave front lead to the opposite effect. Analysis of the joint action of these factors shows that a fast magnetoacoustic perturbation outgoing from an active region can correspond to a shock wave of moderate intensity. This supports the scenario in which the primary source of the coronal wave is an eruptive filament that impulsively expands in the magnetosphere of an active region.  相似文献   
8.
9.

We present results from a new series of experiments on the geophysically important issue of the instability of anticyclonic columnar vortices in a rotating fluid in circumstances such that the Rossby number exceeds unity. The vortex pair consisting of a cyclonic and an anticyclonic vortex is induced by a rotating flap in a fluid which is itself initially in a state of solid-body rotation. The anticyclonic vortex is then subject to either centrifugal or elliptical instability, depending on whether its initial ellipticity is small or large, while the cyclone always remains stable. The experimental results demonstrate that the perturbations due to centrifugal instability have a typical form of toroidal vortices of alternating sign (rib vortices). The perturbations due to elliptical instability are of the form of sinuous deformation of the vortex filament in the plane of maximal stretching which corresponds to the plane of symmetry for the vortex pair. The initial perturbations in both cases are characterized by a definite wave number in the vertical direction. The characteristics of the unstable anticyclone are determined by the main nondimensional parameter of the flow - the Rossby number. The appearance of both centrifugal and elliptical instabilities are in accord with the predictions of theoretical criteria for these cases.  相似文献   
10.
We model the propagation of a coronal shock wave, using nonlinear geometrical acoustics. The method is based on the Wentzel–Kramers–Brillouin (WKB) approach and takes into account the main properties of nonlinear waves: i) dependence of the wave front velocity on the wave amplitude, ii) nonlinear dissipation of the wave energy, and iii) progressive increase in the duration of solitary shock waves. We address the method in detail and present results of the modeling of the propagation of shock-associated extreme-ultraviolet (EUV) waves as well as Moreton waves along the solar surface in the simplest solar corona model. The calculations reveal deceleration and lengthening of the waves. In contrast, waves considered in the linear approximation keep their length unchanged and slightly accelerate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号