首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   2篇
地质学   9篇
  2021年   1篇
  2013年   1篇
  2011年   1篇
  2009年   3篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2001年   1篇
排序方式: 共有11条查询结果,搜索用时 109 毫秒
1.
The main exhumation of the Menderes massif, western Turkey, occurred along an originally N‐dipping Datça–Kale main breakaway fault that controlled depositions in the Kale and the Gökova basins during the Oligocene – Early Miocene interval. The isostatically controlled upward bending of the main breakaway fault brings the lower plate rocks to the surface. In the Early Miocene, E–W‐trending N‐ and S‐dipping graben‐bounding faults fragmented the exhumed, dome‐shaped massif. The development of half grabens by rolling master fault hinges has allowed further exhumation of the central Menderes massif. After the Pliocene, high‐angle normal faults cut all of the previous structures. This model suggests that the Menderes massif is a single large metamorphic core complex that has experienced a two‐stage exhumation process.  相似文献   
2.
The numerical and proportional distributions of zoobenthos in lake Uluabat, which is located in the Northwestern part of Turkey and having international importance according to the Ramsar Convention, were determined from August 2004 to July 2005 at monthly intervals (except for December 2004, January and February 2005) at 12 different stations. Thirty‐three taxonomic groups were recorded. It was found that the zoobenthos consisted of 35.6 % Oligochaeta, 27.7 % Nematoda, 12.3 % Chironomidae larvae, 10.7 % Gastropoda, 3.6 % Ostracoda, and 10.1 % Varia by numbers (Bivalvia, Ceratopogonidae, Hirudinea, Odonata, Ephemeroptera, Asilidae, Hydraacarina, Hemiptera, Argulidae, and Gammaridae). The average number of invertebrates was 160 individuals for 33 taxa at the 12 different stations. Also some environmental parameters of the lakewater were analyzed (temperature, pH, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, NO2–N, NO3–N, NH3–N, PO4–3, fecal coliform, and total coliform). The relationships between the dynamics of the Oligochaeta and the physicochemical variables were supported by the Pearson correlation index and the canonical correspondence analysis (CANOCO). It was found that the relation between the average number of P. hammoniensis and P. albicola (p < 0.05, r = 0.590 and 0.593, respectively) and L. hoffmeisteri (p < 0.01, r = 0.777) was directly proportional while the relation between the average number of some taxa Trichodrillus sp., Rhyacodrilus coccineus, Nais communis, N. variabilis, and N. barbata and NO3–N (p < 0.05, r = –0.685) was inversely proportional.  相似文献   
3.
The Simav metamorphic core complex of the northern Menderes massif, western Turkey, consists of a plutonic (Tertiary) and metamorphic (Precambrian) core (footwall) separated from an allochthonous cover sequence (hanging wall) by a low-angle, ductile-to-brittle, extensional fault zone (i.e. detachment fault). The core rocks below the detachment fault are converted into mylonites with a thickness of a few hundred metres. Two main deformation events have affected the core rocks. The first deformational event (D1) was developed within the Precambrian metamorphic rocks. The second event (D2), associated with the Tertiary crustal extension, includes two distinct stages. Stage one is the formation of a variably developed ductile (mylonitic) deformation (D2d) in metamorphic and granitic core rocks under greenschist facies conditions. The majority of the mylonites in the study area have foliations that strike NNW to NNE and dip SW to SE. Stretched quartz and feldspar grains define the mineral lineation trending SW-NE direction and plunging gently to SW. The kinematic indicators indicate a top-to-NE sense of shear. Stage two formation of brittle deformation (D2b) that affected all core and cover rocks. D2b involves the development of cataclasites and high-angle normal faults. An overall top towards the north sense of shear for the ductile (mylonitic) fabrics in the core rocks is consistent with the N-S regional extension in western Turkey.  相似文献   
4.
Expansive clays undergo swelling when subjected to water. This can cause damage, especially to light weight structures, water conveyance canals, lined reservoirs, highways, and airport runways unless appropriate measures are taken. In this study, granulated blast furnace slag (GBFS) and GBFS-cement (GBFSC) were utilized to overcome or to limit the expansion of an artificially prepared expansive soil sample (sample A). GBFS and GBFSC were added to sample A in proportions of 5–25% by weight. The effects of these stabilizers on grain size distribution, Atterberg limits, swelling percentage and rate of swell of soil samples were determined. GBFS and GBFSC were shown to successfully decreasing the total amount of swell while increasing the rate of swell.  相似文献   
5.
6.
Gumus  Veysel  Simsek  Oguz  Avsaroglu  Yavuz  Agun  Berivan 《Natural Hazards》2021,109(2):1759-1776
Natural Hazards - Drought is considered to be one of the most devastating natural disasters. In recent years, determination of historical droughts has gained more importance. This can be attributed...  相似文献   
7.
The Emizözü shear zone is the west–northwest-trending ductile shear zone within the A?açören granitoid in central Turkey. Deformation that affected the granitoid along the Emizözü shear zone resulted in mylonites with mylonitic foliation and stretching lineation. The textural features of the deformed minerals suggest that mylonitization occurred under conditions of upper greenschist facies. The shear indicators, including asymmetric porphyroclasts, oblique foliation, and shear bands, suggest a down-dip (top-to-the-southwest) displacement. The orientation of stretching lineation, as well as kinematic indicators, indicates the extensional character of the Emizözü shear zone. Although it is not precisely dated, the available age constraints suggest that the zone formed at 78–71 Ma. According to field and micro-structural data, the A?açören granitoid was most likely emplaced during a regional deformation in central Turkey, and synchronously or shortly after was overprinted by the extensional Emizözü shear zone. The zone can also be correlated with the earlier stage development of the Tuzgölü basin in central Turkey.  相似文献   
8.
The Mediterranean-type karst-bauxite deposit of Morta?, south Turkey, placed unconformably between Cenomanian and Senonian shallow marine limestones is built of massive (MB), oolithic (OB), breccia-bearing (BB) and earthy (EB) bauxite horizons, from top to bottom. The MB layer is enriched in Al and REE (except Ce) due to loss of Si, Na, K, Mg and P. REE are accumulated in the BB but depleted in the EB layers. The ferruginous OB lost LREE and gained in HREE probable due to scavenging by authigenic heavy minerals like rutile, anatase and titanite. Total REE contents in the bauxite profile display an increasing trend from bottom to top, while negative and maximum positive Ce anomalies characterize the upper and the lower parts of the profile, respectively. This unusual REE behavior is explicable by assuming mobilization of Ce(IV) either under reducing condition or chemical complexation under alkaline conditions in the top layer and scavenging of Ce by Al-Mg hydrosilicates and Ti-oxides and/or precipitation with authigenic REE minerals, especially of the bastnäsite group near the bedrock limestones. Similarity in chondrite normalized-REE patterns of the Seydi?ehir phyllites, bauxite and terra rossa samples and the presence of tridymite (?) in bauxites makes a felsic source rock most likely and reveal a close genetic relationship between the Seydi?ehir phyllites and the recent terra rossa occurrences. The REE patterns of the bauxites resemble those of the Katrangedi?i limestone despite variations in ΣREE. Field observations and geochemical data together with mass-balance calculations suggest that the Morta? deposit was derived from the Seydi?ehir phyllites and argillic phase within the Katrangedi?i limestone which in turn have Precambrian (?) felsic, probably granitic precursors.  相似文献   
9.
Mafic microgranular enclaves (MMEs) are widespread in the Horoz pluton with granodiorite and granite units. Rounded to elliptical MMEs have variable size (from a few centimetres up to metres) and are generally fine-grained with typical magmatic textures. The plagioclase compositions of the MMEs range from An18?CAn64 in the cores to An17?CAn29 in the rims, while that of the host rocks varies from An17 to An55 in the cores to An07 to An33 in the rims. The biotite is mostly eastonitic, and the calcic-amphibole is magnesio-hornblende and edenite. Oxygen fugacity estimates from both groups?? biotites suggest that the Horoz magma possibly crystallised at fO2 conditions above the nickel?Cnickel oxide (NNO) buffer. The significance of magma mixing in their genesis is highlighted by various petrographic and mineralogical characteristics such as resorption surfaces in plagioclases and amphibole; quartz ocelli rimmed by biotite and amphibole; sieve and boxy cellular textures, and sharp zoning discontinuities in plagioclase. The importance of magma mixing is also evident in the amphiboles of the host rocks, which are slightly richer in Si, Fe3+ and Mg in comparison with the amphiboles of MMEs. However, the compositional similarity of the plagioclase and biotite phenocrysts from MMEs and their host rocks suggests that the MMEs were predominantly equilibrated with their hosts. Evidence from petrography and mineral chemistry suggests that the adakitic Horoz MMEs could be developed from a mantle-derived, water-rich magma (>3 mass%) affected by a mixing of felsic melt at P >2.3?kbar, T >730°C.  相似文献   
10.
Many Neo-Tethyan ophiolitic bodies are well exposed as thrust-slices in Central Anatolia and are predominantly represented by massive hornblende gabbros, most of which are cut by Supra Subduction Zone (SSZ) plagiogranites. The allochthonous gabbros are distinct from their autochthonous counterparts, with their mineralogy including both igneous hornblende, relict diopside rimmed by replacement hornblende and their chemical composition corresponding mostly to gabbro rather than diorite.The results of major and trace element analyses of forty-two samples, and REE analyses of nine samples, indicate that the hornblende gabbros are SSZ-type and formed from a wet magma by high-degree partial melting of peridotite possibly coupled with contamination by predominantly neighbouring-slab derived fluids within an intra-oceanic back-arc basin. The mafic magmas then underwent high-level fractional crystallization involving titaniferous magnetite, diopside, tschermakite and possibly olivine. Emplacement was followed by extensive ocean–floor metamorphism, which has induced crystallization (or recrystallization) of chlorite, biotite, amphiboles and mobilisation of most of the major elements such as alkali and alkali earth elements, and some LREE.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号