首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
大气科学   1篇
地球物理   2篇
地质学   2篇
海洋学   6篇
综合类   1篇
  2020年   1篇
  2016年   1篇
  2013年   2篇
  2009年   1篇
  2007年   1篇
  2002年   1篇
  2001年   1篇
  1999年   4篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
This short contribution reports the results of a field study on the nearshore characteristics of waves generated by both conventional and high speed passenger ferries. The field observations took place in the late summer of 2005, at a beach close to the port of Mytilene (Island of Lesbos, Greece), and involved the visual observation of ship waves, using digital video recordings and image processing techniques. The results showed that passage of the fast ferry was associated with a longer, more complex and energetic nearshore event; this event not only did include higher nearshore waves (up to 0.74 m) and was organised in different wave packets, but it was also an order of magnitude longer (∼ 680 s) than the conventional ferry event. Regarding the effects on beach sediment dynamics, the fast ferry waves were estimated to be very efficient in mobilising the nearshore sediments in contrast to those of the conventional ferry. The fast ferry service appears to generate daily prolonged nearshore events, which contain waves with higher energy than those expected from the normal summer wind wave regime of the area; these events also include some high and very steep waves, which can be particularly erosive. Therefore, fast ferry wakes may have considerable impacts on the seasonal beach sediment dynamics/morphodynamics and the nearshore benthic ecology, as well as they may pose significant risks to bathers, affecting the recreational use of the beaches exposed to fast ferry traffic. Finally, the study has shown that satisfactory field observations of the nearshore characteristics of ship-generated (and wind) waves can be obtained using inshore deployments of calibrated poles, digital video cameras and appropriate image processing algorithms.  相似文献   
2.
Abstract

Shallow water bathymetry has proved to be a challenging task for remote sensing applications. In this work, Green-Wavelength Terrestrial Laser Scanning (GWTLS) is employed to survey nearshore bathymetry under clear atmospheric and water conditions. First, the obtained seabed points were corrected for refraction and then geo-registration, and filtering processes were exerted to obtain an accurate bathymetric surface. Terrain analysis was performed with respect to a reference surface derived from classical surveying techniques. The overall analysis has shown that the best results stem from 35° to 50° incident angles, whereas for angles higher than 65° measurements are not acceptable, although for the same angle in front and close to the instrument accuracy is considered acceptable due to the high laser power. Also, high resolution micro-topography, shallower than 1?m water depth, was managed to be captured. Systematic experimental approaches are expected to improve the GWTLS technique to detect bathymetry, which is anticipated to assist in mapping very shallow foreshore, tidal, and deltaic environments, to contribute conceptual into developing hybrid observation systems for coastal monitoring, and also to be applied in various maritime applications.  相似文献   
3.
Velegrakis  A. F.  Trygonis  V.  Chatzipavlis  A. E.  Karambas  Th.  Vousdoukas  M. I.  Ghionis  G.  Monioudi  I. N.  Hasiotis  Th.  Andreadis  O.  Psarros  F. 《Natural Hazards》2016,83(1):201-222
This contribution presents the results of a study on the shoreline variability of a natural perched urban beach (Ammoudara, N. Crete, Greece). Shoreline variability was monitored in high spatio-temporal resolution using time series of coastal video images and a novel, fully automated 2-D shoreline detection algorithm. Ten-month video monitoring showed that cross-shore shoreline change was, in some areas, up to 8 m with adjacent sections of the shoreline showing contrasting patterns of beach loss or gain. Variability increased in spring/early summer and stabilized until the end of the summer when partial beach recovery commenced. Correlation of the patterns of beach change with wave forcing (as recorded at an offshore wave buoy) is not straightforward; the only discernible association was that particularly energetic waves from the northern sector can trigger changes in the patterns of shoreline variability and that increased variability might be sustained by increases in offshore wave steepness. It was also found that the fronting beachrock reef exerts significant geological control on beach hydrodynamics. Hydrodynamic modelling and observations during an energetic event showed that the reef can filter wave energy in a highly differential manner, depending on its local architecture. In some areas, the reef allows only low-energy waves to impinge on the shoreline, whereas elsewhere penetration of higher waves is facilitated by the low elevation and limited width of the reef or by the presence of an inlet. Wave/reef interaction can also generate complex circulation patterns, including rip currents that appeared to be also constrained by the reef architecture.  相似文献   
4.
With 80 % of world trade carried by sea, seaports provide crucial linkages in global supply-chains and are essential for the ability of all countries to access global markets. Seaports are likely to be affected directly and indirectly by climatic changes, with broader implications for international trade and development. Due to their coastal location, seaports are particularly vulnerable to extreme weather events associated with increasing sea levels and tropical storm activity, as illustrated by hurricane “Sandy”. In view of their strategic role as part of the globalized trading system, adapting ports in different parts of the world to the impacts of climate change is of considerable importance. Reflecting the views of a diverse group of stakeholders with expertise in climate science, engineering, economics, policy, and port management, this essay highlights the climate change challenge for ports and suggests a way forward through the adoption of some initial measures. These include both “soft” and “hard” adaptations that may be spearheaded by individual port entities, but will require collaboration and support from a broad range of public and private sector stakeholders and from society at large. In particular, the essay highlights a need to shift to more holistic planning, investment and operation.  相似文献   
5.
Five research cruises were undertaken incorporating ADCP sections along the Cretan Arc Straits and CTD surveys covering the entire area of the Straits and the Cretan Sea. In addition, six moorings (with 15 current meters) were deployed within the Straits, which monitored flows in the surface (50 m), intermediate (250 m), and deep (50 m from the bottom) layers. The ADCP, CM, and CTD datasets enable the derivation of water transports through the Cretan Arc Straits to be assessed. Flow structure through the Cretan Arc Straits is not the typical flow regime with a surface inflow and deep outflow, instead there is a persistent deep outflow of Cretan Deep Water (CDW) (σθ>29.2) with an annual mean of ˜0.6 Sv, through the Antikithira and Kassos Straits at depths below 400 m and 500 m, respectively. CDW outflowing transports are higher (˜0.8 Sv) in April–June, and lower (˜0.3 Sv) in October–December. Within the upper water layer (0–˜400 m), the transport and the water exchanges through the Straits are controlled by local circulation features, which weaken substantially below 200 m. The Asia Minor Current (AMC) influences the Rhodes and the Karpathos Straits, resulting in a net inflow of water. In contrast, the Mirtoan/West Cretan Cyclone influences the Antikithira and Kithira Straits, where there is a net outflow. In the Kassos Strait, there is a complex interaction between the East Cretan Cyclone, the Ierapetra Anticyclone and the westward extension of the Rhodes Gyre, which results in a variable flow regime. There is a net inflow in autumn and early winter, and a switch to a net outflow in early spring and summer. The total inflow and outflow, throughout all of the Straits, ranged from ˜2 to ˜3.5 Sv, with higher values in autumn and early winter and lower in summer. The AMC carries ˜2 Sv of inflow through the Rhodes and Karpathos Straits, and this accounts for 60–80% of the total inflow. About 10–15% of the total outflow is of CDW, and a further 45–70% occurs through the upper 400 m of the Kithira and Antikithira Straits. The Kassos Strait exhibits a net inflow of ˜0.7 Sv in autumn and early winter, with a net outflow of ˜0.5 Sv in early spring and summer.  相似文献   
6.
The present contribution considers the dynamics of beaches occupied by outcropping/buried beachrocks, i.e. hard coastal formations consisting of beach material lithified by in situ precipitated carbonate cements. The dynamics of a Greek microtidal beach with beachrocks (Vatera, Lesbos) are examined through the collection and analysis of morphological and sedimentary field data, a 2-D nearshore hydrodynamic model and a specially constructed 1-D morphodynamic model. The results showed that the beachrock-occupied part of the beach is characterised by distinctive morphodynamics as: (i) its beachface is associated with large slopes; (ii) there is a good spatial correlation between the sub-aerial and shallow submerged mean beach profile and the buried/outcropping upper beachrock surface; and (iii) the seaward margins of the submerged beachrock outcrops are always associated with a ‘scour step’ i.e. a submerged cliff. The results also showed that beachrock outcrops can bias cross-shore sediment exchanges by impeding onshore transport due to the presence of the scour step. In this sense, beachrock outcrops may be considered as offshore transport ‘conduits’ for the beach sediments. A conceptual model of beach sediment transport, based on the field data and the hydrodynamic modelling is proposed. According to this model, fresh beach material from adjacent terrestrial sources is transported alongshore, towards the central part of the embayment, where a littoral transport convergence zone occurs under most wave conditions. There, the laterally supplied sediments are lost offshore.  相似文献   
7.
Seasonal observations on the nature and concentration of suspended particulate matter (SPM) are presented for a cross-section of the English Channel, between the Isle of Wight (UK) and Cotentin peninsula (France) i.e. the western boundary of the eastern English Channel. The highest concentrations of suspended material are found adjacent to the English coastline, whereas the offshore waters are associated with low concentrations. Seasonal variations in the concentration and nature of suspended material are identified, with highest concentrations in winter. At this time, the suspended particles are characterised generally by peaked grain size spectra and an enrichment in coarse silt particles; in summer, the distributions are generally flat. The diatom communities found within the suspended matter indicate that material resuspended in the coastal zone and the estuarine environments is transported offshore. SPM fluxes (based upon the observed SPM concentrations and the output from a 2-D hydrodynamic model) from the western Channel through the Wight–Cotentin Section, ranged between 2 and 71×106 t a−1 with a mean of around 20×106 t a−1 over the period of the observations (1994–1995). These fluxes are comparable to the order of magnitude and mean value reported as output through the Dover Strait. Therefore, it is possible that the eastern English Channel may be characterised as an area of fine-grained sediment ‘bypass'. This interpretation is corroborated by: (a) the absence of fine-grained sediment deposits over the area; and (b) correlation between the potential resuspension time of the fine particles and the seabed sediment distribution.  相似文献   
8.
Small water storage dams are nowadays regarded as the ideal solution for the water-thirsty islands of the Greek Archipelago. Several of these dams have been already constructed and more are planned for the near future. However, dams can also create problems to coastal areas, particularly to the beaches found at the lower reaches of the dammed rivers. The present contribution reports the results of a study undertaken on the effects of such a dam located at Eressos, Lesbos (E. Mediterranean), using both morphological and sedimentological information and a GIS-based sediment erosion model. The results showed that Eressos Beach is currently under erosion, which however is spatially variable. The spatial variability of the beach erosion can only partly be explained by the patterns of longshore sediment transport, suggesting also a negative sedimentary balance. The results of the sediment erosion model showed that the dam retains more than half of the sediment produced in the basin, irrespective of the scenario used. Thus, it is likely that the effects of the dam on the downstream beach are already apparent.  相似文献   
9.
The threshold of movement of sediment obtained from sandbanks within the Bristol Channel (UK) is investigated under unidirectional, oscillatory and combined flows. The experiments were undertaken in a recirculating, unidirectional laboratory flume containing an oscillating plate to simulate wave action, with movement along the same axis as the unidirectional flows. The sand samples consisted of cohesionless quartz grains with median grain sizes between 0·315 and 0·513 mm. The experiments were performed under flow velocities (measured at 2 cm above the bed) ranging between 0 and 24 cm s–1 and oscillatory currents (wave periods of 5, 12 and 15 s) ranging from 0 to 28 cm s–1. The critical conditions for the initiation of sediment movement were assessed, by visual observation, using the Yalin criterion. The results show that, under unidirectional flow, there is a slight overestimation of the threshold of naturally graded sediments derived on the basis of empirically derived threshold curves for artificially prepared sediments under similar flow conditions. In the case of oscillatory flows, the threshold for the natural sands is found to be higher than that predicted by previously derived empirical curves. Under combined flows, wave period is shown to control threshold conditions, with the unidirectional and oscillatory flow components combining in a linear fashion for long-period (12 s and 15 s) waves. In contrast, in the presence of short-period (5 s) waves, the unidirectional and oscillatory components of the flow appear to 'decouple'. For high orbital velocities, in both cases, the effect of the wave period on threshold diminishes.  相似文献   
10.
Internal waves have been detected on ERS-1 SAR images obtained during late summer over the eastern Cretan Straits, an area characterised by complex regional physiography, bottom topography, flow regime and stratification patterns of the upper part of the water column. Analysis of the imaged characteristics of the internal waves has revealed a strong diversity in form, propagation direction and type of sea surface modulation, which indicates various mechanisms of generation. Analysis of the currents recorded over the area shows that, although semi-diurnal tidal currents are present, these are of low magnitude in comparison with the overall flow and, therefore, tidal forcing is unlikely to be a major process in the generation of the imaged internal waves. In addition, a well-defined front has been identified within the Rhodes Strait. This front is considered to be the surficial manifestation of the Asia Minor Current, which is a strong and persistent large-scale circulation feature of the Eastern Mediterranean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号