首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
地球物理   12篇
地质学   3篇
海洋学   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2010年   1篇
  2007年   2篇
  2005年   3篇
  1999年   4篇
  1993年   1篇
  1991年   1篇
  1978年   1篇
排序方式: 共有16条查询结果,搜索用时 390 毫秒
1.
Volcanism related to subduction of the Philippine Sea (PHS) plate began in Central Kyushu at 5 Ma, after a pause of igneous activity lasting about 10 m.y. It formed a large volcano-tectonic depression, the Hohi volcanic zone (HVZ), and has continued to the present at a decreasing eruption rate. The products are largely andesite and dacite, which became enriched in K with time. The proportion of tholeiitic to calc alkalic rocks also increases with time. Calc-alkalic high-Mg basaltic andesites (YbBs) were erupted in the early stage of the HVZ activity (5–3 Ma), and high-alumina basalts (KjBs) were erupted in the later stage (2–0 Ma). In contrast to the basalts in the HVZ, Northwest Kyushu basalts (NWKBs) have been erupted on the backarc side of the HVZ since 11 Ma, and hence are not related to the PHS plate subduction. They are mainly high-alkali tholeiitic to alkali basalt that shows no notable chemical change with time. NWKB, YbB, and KjB have MORB-normalized incompatible-element spectra that differ from each other, as is well expressed in both Nb and Sr anomalies. The patterns of KjB and NWKB are typical of those for island-arc basalt (IAB) and ocean-island basalt (OIB), respectively. YbB shows a pattern intermediate between the two. We suggest that the magma source beneath the HVZ changed in composition from an OIB-type mantle to an IAB-type mantle as the subduction of PHS plate advanced. However, the magma source remained fertile under Northwest Kyushu. In order to explain the temporal change of source mantle beneath the HVZ, we propose a model for progressive contamination of the mantle wedge, in which three processes (contamination by a slab-derived component, subtraction of magma from the mantle, and mixing of the mantle residue and slab-derived component) are repeated as subduction continues. As long as the progressive contamination of mantle wedge proceeds, its trace-element composition converges at a steady-state value for a short period. This value does not depend on the initial composition of the mantle wedge but instead on the composition of the slab-derived component. The trace-element composition of the magma produced in such a mantle wedge approaches that of the slab-derived component with time, but the major-element composition is determined by the phase relations of mantle peridotite. The slab-derived component may be basaltic liquid that is partially melted from rutile-bearing eclogite.  相似文献   
2.
Magma plumbing system of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:0,他引:1  
During the 2000 eruption at Miyakejima Volcano, two magmas with different compositions erupted successively from different craters. Magma erupted as spatter from the submarine craters on 27 June is aphyric basaltic andesite (<5 vol% phenocrysts, 51.4–52.2 wt% SiO2), whereas magma issued as volcanic bombs from the summit caldera on 18 August is plagioclase-phyric basalt (20 vol% phenocrysts, 50.8–51.3 wt% SiO2). The submarine spatter contains two types of crystal-clots, A-type and A-type (andesitic type). The phenocryst assemblages (plagioclase, pyroxenes and magnetite) and compositions of clinopyroxene in these clots are nearly the same, but only A-type clots contain Ca-poor plagioclase (An < 70). We consider that the A-type clots could have crystallized from a more differentiated andesitic magma than the A-type clots, because FeO*/MgO is not strongly influenced during shallow andesitic differentiation. The summit bombs contain only B-type (basaltic type) crystal-clots of Ca-rich plagioclase, olivine and clinopyroxene. The A-type and B-type clots have often coexisted in Miyakejima lavas of the period 1469–1983, suggesting that the magma storage system consists of independent batches of andesitic and basaltic magmas. According to the temporal variations of mineral compositions in crystal-clots, the andesitic magma became less evolved, and the basaltic magma more evolved, over the past 500 years. We conclude that gradually differentiating basaltic magma has been repeatedly injected into the shallower andesitic magma over this period, causing the andesitic magma to become less evolved with time. The mineral chemistries in crystal-clots of the submarine spatter and 18 August summit bombs of the 2000 eruption fall on the evolution trends of the A-type and B-type clots respectively, suggesting that the shallow andesitic and deeper basaltic magmas existing since 1469 had successively erupted from different craters. The 2000 summit collapse occurred due to drainage of the andesitic magma from the shallower chamber; as the collapse occurred, it may have caused disruption of crustal cumulates which then contaminated the ascending, deeper basalt. Thus, porphyritic basaltic magma could erupt alone without mixing with the andesitic magma from the summit caldera. The historical magma plumbing system of Miyakejima was probably destroyed during the 2000 eruption, and a new one may now form.Editorial responsibility: S Nakada, T Druitt  相似文献   
3.
Mafic enclaves in the 1991–1995 dacite of Unzen volcano show chemical and textural variability, such as bulk SiO2 contents ranging from 52 to 62 wt% and fine- to coarse-grained microlite textures. In this paper, we investigated the mineral chemistry of plagioclase and hornblende microlites and distinguished three enclave types. Type-I mafic enclaves contain high-Mg plagioclase and low-Cl hornblende as microlites, whereas type-III enclaves include low-Mg plagioclase and high-Cl hornblende. Type-II enclaves have an intermediate mineral chemistry. Type-I mafic enclaves tend to show a finer-grained matrix, have slightly higher bulk rock SiO2 contents (56–60 wt%) when compared with the type-III mafic enclaves (SiO2?=?53–59 wt%), but the overall bulk enclave compositions are within the trend of the basalt–dacite eruptive products of Quaternary monogenetic volcanoes around Unzen volcano. The origin of the variation of mineral chemistry in mafic enclaves is interpreted to reflect different degree of diffusion-controlled re-equilibration of minerals in a low-temperature mushy dacitic magma reservoir. Mafic enclaves with a long residence time in the dacitic magma reservoir, whose constituent minerals were annealed at low-temperature to be in equililbrium with the rhyolitic melt, represent type-III enclaves. In contrast, type-I mafic enclaves result from recent mafic injections with a mineral assemblage that still retains the high-temperature mineral chemistry. Taking temperature, Ca/(Ca?+?Na) ratio of plagioclase, and water activity of the hydrous Unzen magma into account, the Mg contents of plagioclase indicate that plagioclase microlites in type-III enclaves initially crystallized at high temperature and were subsequently re-equilibrated at low-temperature conditions. Compositional profiles of Mg in plagioclase suggest that older mafic enclaves (Type-III) had a residence time of ~100 years at 800 °C in a stagnant magma reservoir before their incorporation into the mixed dacite of the 1991–1995 Unzen eruption. Presence of different types of mafic enclaves suggests that the 1991–1995 dacite of Unzen volcano tapped mushy magma reservoir intermittently replenished by high-temperature mafic magmas.  相似文献   
4.
A buried, old volcanic body (pre‐Komitake Volcano) was discovered during drilling into the northeastern flank of Mount Fuji. The pre‐Komitake Volcano is characterized by hornblende‐bearing andesite and dacite, in contrast to the porphyritic basaltic rocks of Komitake Volcano and to the olivine‐bearing basaltic rocks of Fuji Volcano. K‐Ar age determinations and geological analysis of drilling cores suggest that the pre‐Komitake Volcano began with effusion of basaltic lava flows around 260 ka and ended with explosive eruptions of basaltic andesite and dacite magma around 160 ka. After deposition of a thin soil layer on the pre‐Komitake volcanic rocks, successive effusions of lava flows occurred at Komitake Volcano until 100 ka. Explosive eruptions of Fuji Volcano followed shortly after the activity of Komitake. The long‐term eruption rate of about 3 km3/ka or more for Fuji Volcano is much higher than that estimated for pre‐Komitake and Komitake. The chemical variation within Fuji Volcano, represented by an increase in incompatible elements at nearly constant SiO2, differs from that within pre‐Komitake and other volcanoes in the northern Izu‐Bonin arc, where incompatible elements increase with increasing SiO2. These changes in the volcanism in Mount Fuji may have occurred due to a change in regional tectonics around 150 ka, although this remains unproven.  相似文献   
5.
The accumulation rates of sediment cores in Osaka Bay have been determined by using210Pb dating technique. In the upper 10 cm210Pbex contents show a constant value with depth. The accumulation rates below the homogeneous layer of sediments ranging from 0.12 to 0.61cm y–1 (0.067–0.34 g cm–2 y–1) were obtained. The higher contents of Zn, Cu, Pb and Cr were observed in the upper 10 to 30 cm of sediments. Assuming that the increment of heavy metal content in sediments is due to anthropogenic origin, the amount of anthropogenic input of heavy metals into sediments were estimated to be 1,300–2,700g cm–2 for Zn, 150 – 480 for Cu, 360 – 410 for Pb and 320 – 480 for Cr. The increment appears to start about 100 years ago. In surfical sediments most of heavy metal contents exceeded the background content, and then most part of Osaka Bay is polluted by heavy metals.  相似文献   
6.
The eruption of Unzen Volcano commenced on 17 November 1990. Phreatic and phreatomagmatic eruptions occurred by early May 1991. No large-scale explosive eruptions preceded the extrusion of lava domes. Lava domes appeared in a summit crater on 20 May 1991, and they grew on the steep slope of Mt. Fugen at Unzen Volcano. Rockfalls from the margins of the domes frequently generated pyroclastic flows. Major pyroclastic flows occurred on 3 June, 8 June, and 15 September 1991. The 3 June pyroclastic flow killed forty-three persons. Many of the pyroclastic flows seem to have resulted from the simple rockfalls, except one flow on 8 June, which was accompanied by an explosion from the crater. Many of the rockfalls that generated pyroclastic flows were witnessed. As of November 1991. Unzen Volcano was still active with a nearly constant magma-supply rate of about 0.3 × 106 m3/d. The total magma output exceeded 45 × 106 m3 by the beginning of November 1991. The volume of the lava domes is more than 23 × 106 m3.  相似文献   
7.
The latest eruption of Haruna volcano at Futatsudake took placein the middle of the sixth century, starting with a Plinianfall, followed by pyroclastic flows, and ending with lava domeformation. Gray pumices found in the first Plinian phase (lowerfall) and the dome lavas are the products of mixing betweenfelsic (andesitic) magma having 50 vol. % phenocrysts and maficmagma. The mafic magma was aphyric in the initial phase, whereasit was relatively phyric during the final phase. The aphyricmagma is chemically equivalent to the melt part of the phyricmafic magma and probably resulted from the separation of phenocrystsat their storage depth of 15 km. The major part of the felsicmagma erupted as white pumice, without mixing and heating priorto the eruption, after the mixed magma (gray pumice) and heatedfelsic magma (white pumice) of the lower fall deposit. Althoughthe mafic magma was injected into the felsic magma reservoir(at 7 km depth), part of the product (lower fall ejecta) precedederuption of the felsic reservoir magma, as a consequence ofupward dragging by the convecting reservoir of felsic magma.The mafic magma injection made the nearly rigid felsic magmaerupt, letting low-viscosity mixed and heated magmas open theconduit and vent. Indeed the lower fall white pumices preservea record of syneruptive slow ascent of magma to 2 km depth,probably associated with conduit formation. KEY WORDS: high-crystallinity felsic magma; magma plumbing system; multistage magma mixing; upward dragging of injected magma; vent opening by low-viscosity magma  相似文献   
8.
Large-scale collapse of a dacite dome in the late afternoon of 15 September 1991 generated a series of pyroclastic-flow events at Unzen Volcano. Pyroclastic flows with a volume of 1×106 m3 (as DRE) descended the northeastern slope of the volcano, changing their courses to the southeast due to topographic control. After they exited a narrow gorge, an ash-cloud surge rushed straight ahead, detaching the main body of the flow that turned and followed the topographic lows to the east. The surge swept the Kita-Kamikoba area, which had been devastated by the previous pyroclastic-flow events, and transported a car as far as 120 m. Following detachment, the surge lost its force after it moved several hundred meters, but maintained a high temperature. The deposits consist of a bottom layer of better-sorted ash (unit 1), a thick layer of block and ash (unit 2), and a thin top layer of fall-out ash (unit 3). Unit 2 overlies unit 1 with an erosional contact. The upper part of unit 2 grades into better-sorted ash. At distal block-and-ash flow deposits, the bottom part of unit 2 also consists of better-sorted ash, and the contact with the unit 1 deposits becomes ambiguous. Video footage of cascading pyroclastic flows during the 1991–1995 eruption, traveling over surfaces without any topographic barriers, revealed that lobes of ash cloud protruded intermittently from the moving head and sides, and that these lobes surged ahead on the ground surface. This fact, together with the inspection by helicopter shortly after the events, suggests that the protruded lobes consisted of better-sorted ash, and resulted in the deposits of unit 1. The highest ash-cloud plume at the Oshigadani valley exit, and the thickest deposition of fall-out ash over Kita-Kamikoba and Ohnokoba, indicate that abundant ash was also produced when the flow passed through a narrow gorge. In the model presented here, the ash clouds from the pyroclastic flows were composed of a basal turbulent current of high concentration (main body), an overriding and intermediate fluidization zone, and an overlying dilute cloud. Release of pressurized gas in lava block pores, due to collisions among blocks and the resulting upward current, caused a zone of fluidization just above the main body. The mixture of gas and ash sorted in the fluidization zone moved ahead and to the side of the main body as a gravitational current, where the ash was deposited as surge deposits. The main body, which had high internal friction and shear near its base, then overran the surge deposits, partially eroding them. When the upward current of gas (fluidization) waned, better-sorted ash suspended in the fluidization zone was deposited on block-and-ash deposits. In the distal places of block-and-ash deposits, unit 2 probably was deposited in non-turbulent fashion without any erosion of the underlying layer (unit 1).  相似文献   
9.
Pargasite commonly occurs in the dacitic groundmass of the 1991–1995 eruption products of Unzen volcano. We described the occurrence and chemical compositions of amphibole in the dacite, and also carried out melting experiments to determine the low-pressure stability limit of amphibole in the dacite. The 1991–1995 ejecta of the Unzen volcano show petrographic evidence of magma mixing, such as reverse compositional zoning of plagioclase and amphibole phenocrysts, and we used a groundmass separate as a starting material for the experiments. Reversed experiments show that the maximum temperature for the crystallization of amphibole is 930°C at 196 MPa, 900°C at 98 MPa, and 820°C at 49 MPa. Compared with the experimental results on the Mount St. Helens dacite, present experiments on the Unzen dacitic groundmass show that amphibole is stable to pressures ca. 50 MPa lower at 850°C. Available Fe–Ti oxide thermometry indicates the crystallization temperature of the groundmass of the Unzen dacite to be 880±30°C, suggesting that the groundmass pargasite crystallized at >70 MPa, corresponding to a depth of more than 3 km in the conduit. The chlorine content of the groundmass pargasite is much lower than that of phenocrystic magnesiohornblende in the 1991–1995 dacite of Unzen volcano, indicating that vesiculation/degassing of magma took place before the crystallization of the groundmass pargasite. The present study shows that the magma was water oversaturated and that the degassing of magma along with magma mixing caused crystallization of the groundmass amphibole at depths of more than 3 km in the conduit.  相似文献   
10.
The magma generation at Unzen volcano may be considered as the product of crustal material mixed with mantle magma accompanied by fractional crystallization (AFC). The magma in the Unzen volcano is estimated to consist of about 50–80% of residual magma (F) and about 30–70% assimilated crustal material (A) relative to the original magma. Concerning the 1991–1995 eruption, it is estimated that the magma formed as the result of mixing of about 50–60% crustal material and about 55–65% of residual magma. An alternative magma eruption model for the 1991–1995 eruption is proposed here. In the early stage, the isotopic characteristics of 1991 eruption are defined by AFC process in the deeper magma chamber. Later, the magma ascended through the conduit and quiescently stayed for a long time in a shallow reservoir before eruption. The minerals continuously crystallized as phenocrysts especially at the chilled top and outer margin in the shallow chamber. The crystallized phenocryst mush was reworked into the central part of the magma chamber by means of magma convection and rapid magma ascent. Therefore, the reaction between phenocrysts and melt occurs only in internal chemical disequilibrium in the magma chamber. In contrast, the isotopic compositions of the original magma shall be little influenced by the above processes throughout its eruptive history. The 1991–1995 eruptive rocks of the Unzen volcano show their characteristics in Sr and Nd isotopic values independent of their two previous eruptions. However, the isotopic values of early eruptive product could represent the original magma value. This result also supports the previous work of Chen et al. (1993) [Chen, C.H., DePaolo, D.J., Nakada, S., Shieh, Y.N., 1993. Relationship between eruption volume and neodymium isotopic composition at Unzen volcano. Nature 362, 831–834], that suggested the Nd of early or precursory eruptive products could be a qualitative indicator of the maximum size of a continuing or impending eruption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号