首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
大气科学   1篇
地质学   5篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2009年   1篇
排序方式: 共有6条查询结果,搜索用时 156 毫秒
1
1.
We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier–Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.  相似文献   
2.
The Siruyeh landslide occurred at the eastern side of the Siruyeh valley, 22 km west of Semirom city, south of Esfahān on 25th March, 2005 with large dimensions (2,400 m long, 450 m wide with total area of 1 km2). The sliding mass blocked the Siruyeh River making a 35-m-high natural dam and 6-acre lake 570,000 m3 in volume that poses a potential threat for the area. The landslide occurred in soil and intensely weathered marls of the Tarbur and Kashkan Formations (upper Cretaceous–Paleocene age). The overall comparison and interpretation of the gathered evidence from satellite images, field trips, and laboratory tests show that the most important factors involved in triggering the Siruyeh landslide in order of importance are heavy precipitation and snow melt and intense concentration of faults and fractures as well as weathered and weak lithology.  相似文献   
3.
The Isfahan fault system, a north-trending, dextral strike-slip fault across the Sanandaj-Sirjan zone, represents the boundary between the northwestern and the southeastern parts of the Sanandaj-Sirjan zone and it terminates in the north at the southern boundary of the Urumieh-Dokhtar zone. This paper focuses on the continuation of the Isfahan fault system across the Urumieh-Dokhtar zone north of Isfahan city. The Urumieh-Dokhtar magmatic assemblage belt is located along the active margin of the Iranian plate and the Arabian plate. The Karkas fault strikes nearly north-south, has a length of about 40 km, a normal component of movement, and it truncates the Urumieh-Dokhtar zone. Due to the location of this fault and the mechanism similar to the Isfahan fault system, the Karkas fault can be considered a continuation of the Isfahan fault system that has been displaced dextrally by the southwestern bordering faults of the Urumieh-Dokhtar zone. The unique juxtaposition association of the Silurian volcanic rocks in the Urumieh-Dokhtar zone, near the Karkas fault, provides an important evidence regarding the major role of this fault in the geological evolution of the region. The Silurian volcanic rocks outcrop in two districts of the study area and generally are composed of basalts. The alkaline basalt composition is determined from mineralogy and immobile elements geochemistry. The geotectonic setting diagrams classified the Silurian volcanic rocks as the within plate basalts. Thus, an intracontinental rifting under extensional tectonic regime can be inferred as the setting that controlled formation of these volcanic rocks. They were created by an alkaline to transitional magmas generated due to low partial melting at depth. The alkaline basalts were most likely derived from an asthenosphere-dominated mantle source due to extension and partial melting. The north trending extensional faults affected thinned overlying continental lithosphere in the Paleozoic era, facilitating magma penetration and eruption.  相似文献   
4.
The metamorphic complex of the North Golpayegan is part of the Sanandaj-Sirjan Zone. There are at least three distinct stages of deformation in this complex. Throughout the first stage, Paleozoic and Mesozoic sedimentary rocks have experienced regional metamorphism during Late Jurassic tectonic events related to the subduction of the Neo-Tethys oceanic lithosphere under the Iranian microcontinent. During the second deformation stage in the Late Cretaceous-Paleocene, the rocks have been mylonitized. The third stage of deformation in the region has led to folding and faulting superimposed on previous structures, and to exhumation of the metamorphic complex. This stage has determined the current morphology and N70E strike of the complex. The mylonitic zones of the second stage of deformation have been formed along the dextral transpressional faults. During the third stage of deformation and exhumation of the metamorphic complex, the mylonitic zones have been uplifted to the surface. The granitoids in the metamorphic complex have been injected along the extensional shear fractures related to the dextral transpressional displacements. The granitoids have been transformed into mylonites within the synthetic or antithetic shear zones. These granitoids are recognized as syncollision type (CCG) and have been formed at the end of orogenic events synchronous to the collision between the Arabian and the Iranian plates at the Late Cretaceous-Paleocene.  相似文献   
5.
The metabasites and mylonitic granites of the East and South East of Chadegan in the Isfahan province are a part of the Sanandaj-Sirjan Zone. This region is a large-scale ductile shear zone which has experienced different phases of deformation and dynamothermal metamorphism. There are at least three phases of deformation in this area. During the first phase which was related to the subduction of the Neotethys oceanic lithosphere under the Iranian microcontinent, the study rocks have experienced regional metamorphism. The second deformational phase was concurrent with the collision between the Arabian plate and the Iranian plate in the Late Cretaceous and caused mylonitization of the metamorphic rocks. The NW–SE trending fold and thrust faults have formed in this stage. The mylonitization have been formed along the dextral transpressional faults. During the third stage of deformation and exhumation of the metamorphic complex, the mylonitic zones have been uplifted to the surface. In this the deformation phase, developed the current morphology of the rocks. The granites have been injected along the extensional shear zones related to the dextral transpressional displacements. These granites are related to the continental collision granites type and have been formed synchronous to the collision between the Arabian and the Iranian plate. Enrichment in LREEs comparison to HREEs and the negative Eu anomaly in the primitive mantle-normalized spidergram and Chondrite-normalized REE patterns support an intra-crustal origin for these granites. Upper continental crust-normalized REE patterns show that in terms of LREEs, are similar to Upper continental crust.  相似文献   
6.
The metapelitic schists of the Golpayegan region can be divided into four groups based on their mineral assemblages: (1) garnet-chloritoid schists, (2) garnet schists, (3) garnet-staurolite schists, and (4) staurolite-kyanite schists. Paleozoic pelagic shales experienced progressive metamorphism and polymetamorphism from greenschist to amphibolite facies along the kyanite geotherm. Mylonitic granites are concentrated in the central part of the region more than in other areas, and formed during the dynamic metamorphic phase by activity on the NW-SE striking Varzaneh and Sfajerd faults. The presence of chloritoid in the metapelites demonstrates low-grade metamorphism in the greenschist facies. The textural and chemical zoning of garnets shows three stages of growth and syntectonic formation. With ongoing metamorphism, staurolite appeared, and the rocks reached amphibolite facies, but the degree of metamorphism did not increase past the kyanite zone. Thus, metamorphism of the pelitic sediments occurred at greenschist to lower amphibolite facies. Thermodynamic studies of these rocks indicate that the metapelites in the north Golpayegan region formed at 511?C618°C and 0.24?C4.1 kbar.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号