首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   4篇
地球物理   14篇
地质学   22篇
海洋学   6篇
天文学   15篇
综合类   2篇
自然地理   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   8篇
  2009年   3篇
  2008年   7篇
  2007年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1980年   1篇
排序方式: 共有61条查询结果,搜索用时 489 毫秒
1.
Noriko  Hasebe  Hiroaki  Watanabe 《Island Arc》2004,13(4):533-543
Abstract   To determine how local geological events contributed to the evolution of accretionary complexes and eventual exposure of rocks with different structural levels, geochronological mapping was carried out using fission track (FT) analysis at the Kii Peninsula, southwest Japan. At this site, the original zonal structure of Cretaceous accretionary complexes parallel to the subduction zone is disturbed by the northward projection of the Shimanto accretionary complex. Twenty-six zircon FT ages were obtained from an area of ∼12 km in an east–west direction and ∼15 km in a north–south direction, and classified into three groups: (i) ages ∼15 Ma (range ∼10–20 Ma), which are distributed along the northwest–southeast valley; (ii) ages of ∼50 Ma in the northwest of the study area; and (iii) ages older than those in Groups 1 and 2. Based on results from eight zircon FT length distributions, the Miocene ages appear to be the result of spatial variations in heat influx and cooling after the regional exhumation of the area, as recorded by FT ages of ∼50 Ma.  相似文献   
2.
The Kaleybar, Razgah and Bozqush (KRB) intrusions were studied to better understand subduction-related Eocene-Oligocene alkaline magmatism in NW Iran. The bulk of intrusions mainly consist of Si-undersaturated rocks including foid-bearing monzonite and syenite (nepheline syenite, pseudoleucite syenite) with some foid-bearing diorite and gabbro. In addition, they are spatially associated with Si-saturated rocks ranging in composition from monzo-diorite to syeno-granite. The main mafic rock-forming minerals of the studied rocks are olivine (Fo44Fa56), clinopyroxene (diopside to augite), biotite (Mg-biotite through Fe-biotite), amphibole (ferro-pargasite and magnesio-hastingsite with Mg#<0.55), and garnet (Ti-andradites). Based on whole rock geochemistry, the foid-syenites and associated rocks show mildly alkaline (shoshonitic) affinity. The content of SiO2, K2O?+?Na2O, and K2O/Na2O ratio ranges from 47.8 to 60.7?wt.%, 5.31 to 16.33?wt.%, and 0.6 to 3.2, respectively. The intrusions are commonly metaluminous, with an aluminum-saturation index (ASI) ranging from 0.66 to 1.01. Almost all the rocks display similar arc-related geochemical features characterized by the enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) together with the depletion in high field strength elements (HFSE). The chondrite-normalized REE patterns show no to marked negative Eu anomaly (Eu/Eu*?=?0.55 to 1.12), (La/Yb)N?=?8.16 to 31, (La/Sm)N?=?2.80 to 10.59, and (Tb/Yb)N?=?0.84 to 2.40. The evaluation of the REE patterns for the KRB magmas and the comparison of the trace element ratios with experimental studies indicate a chemically enriched lithospheric mantle source composed of garnet-spinel-lherzolite that have underwent a low degree of partial melting <5% to generate the KRB intrusions. Based on the present data, we infer that the mantle source was contaminated by a subduction component and the melting of the mantle lithosphere occurred by local extension in an overall convergent regime in NW Iran. The extension regime during the Eocene is proposed to be the result of the Neo-Tethys slab roll-back and the Sevan-Akera-Qaradagh (SAQ) slab break-off.  相似文献   
3.
This paper describes a rockfall event in the Daisekkei Valley of Mount Shirouma-dake (2,932 m), the northern Japanese Alps. The rockfall occurred on a steep cliff comprising well-jointed felsites and produced debris of ≥8,000 m3. Most debris was deposited on an elongated snowpatch located immediately beneath the cliff, and it caused casualties among people who were trekking along a trail on the snowpatch. Additionally, a large rock block slipped 1 km on the snowpatch. The rockfall could have been due to the differential retreat of the rockwall, which contains areas of high- and low-density joints. Seasonal and diurnal freeze–thaw activities and snow avalanches and wash appear to be important factors responsible for the retreat. Although some rock blocks that can collapse further remain on the rockwall, the position of the mountain trail in the Daisekkei Valley is fixed. Fundamental reform of tourism systems for climbers, including education on natural hazards, is required.  相似文献   
4.
5.
通过对日本大沼湖沉积物样品总有机碳含量(TOC)及其稳定同位素、总氮含量(TN)和C/N值的测定,结合沉积岩芯火山灰和1℃年代,分析了大沼湖沉积物中有机质的来源,探讨了沉积物有机碳同位素的主要影响因素.结果表明:大沼湖沉积物中有机质主要来源于自生藻类,受陆源输入的影响较小;沉积物δ13C值指示了夏季温度的变化.过去400年来,大沼湖地区存在1660~ 1730年和1780~ 1860年两个明显的冷期,与邻近地区冰芯、树轮和湖泊沉积物记录的冷期基本一致,分别对应于Maunder和Dalton太阳黑子极小期.  相似文献   
6.
Abstract— The Rb-Sr whole rock and internal systematics of two EH3 chondrites, Qingzhen and Yamato 6901, and of one EL6 chondrite, Khairpur, were determined. Sulfides were separated using a stepwise dissolution technique. The mineral species in each fraction were estimated based on the chemical analyses of 12 major elements. The internal Rb-Sr systematics of the EH3 chondrites are highly disturbed. Fractions corresponding to sulfide phases show excess 87Sr, while other fractions corresponding to silicate phases produce a linear trend on a Rb-Sr evolution diagram. If these linear relations are interpreted as isochrons, the ages of the silicate phases are 2.12 ± 0.23 Ga and 2.05 ± 0.33 Ga with the initial Sr isotopic ratios of 0.7112 ± 0.0018 and 0.7089 ± 0.0032, for Qingzhen and Yamato 6901, respectively. The process of the isotopic disturbance probably involved the breakdown of the major K-bearing sulfide (djerfisherite), and a lack of isotopic exchange between sulfide and silicate phases indicates moderate temperatures of reheating. Although a complete Sr isotopic re-homogenization among silicate phases was not attained, we interpret the Rb-Sr results as indicative of a late thermal event about 2 Ga ago on the parent bodies of these EH3 chondrites. These ages agree well with previously published K-Ar ages. An older isochron age of 4.481 ± 0.036 Ga with a low initial Sr isotopic ratio of 0.69866 ± 0.00038 was obtained for the data from silicate fractions of Khairpur, indicating early petrological equilibration on the parent body of EL6 chondrites.  相似文献   
7.
A cosmic dust detector for use onboard a satellite is currently being constructed from piezoelectric lead zirconate titanate (PZT). The characteristics of the PZT detector were studied by bombarding it with hypervelocity iron particles, which were supplied by a Van de Graaff accelerator. There was a linear relationship between the rise time of the signal observed from the detector and the particle's velocity, which was above 10 km/s on impact. It was also found that the rise time was almost independent of the collisional angle between the particles and the PZT surface within the limits of the particle's parameters used in this experiment.  相似文献   
8.
Evaluating the magma depth and its physical properties is critical to conduct a better geophysical assessment of magma chambers of caldera volcanoes that may potentially cause future volcanic hazards. To understand pre-eruptive conditions of a magma chamber before its first appearance at the surface, this paper describes the case of Hijiori caldera volcano in northeastern Japan, which emerged approximately 12,000 years ago at a place where no volcano ever existed. We estimated the depth, density, bulk modulus, vesicularity, crystal content, and bulk H\(_2\)O content of the magma chamber using petrographic interpretations, bulk and microchemical compositions, and thermodynamic calculations. The chemical mass balance calculations and thermodynamic modeling of the erupted magmas indicate that the upper portion of the Hijiori magmatic plumbing system was located at depths between 2 and 4 km, and had the following characteristics: (1) pre-eruptive temperature: about 780 \(^{\circ }\)C; (2) bulk magma composition: 66 ± 1.5 wt% SiO\(_{2}\); (3) bulk magmatic H\(_2\)O: approximately 2.5 wt%, and variable characteristics that depend on depth; (4) crystal content: \(\le\)57 vol%; (5) bulk modulus of magma: 0.1–0.8 GPa; (6) magma density: 1.8–2.3 g/cm3; and (7) amount of excess magmatic H\(_2\)O: 11–32 vol% or 48–81 mol%. The range of melt water contents found in quartz-hosted melt inclusions (2–9 wt%) suggests the range of depth phenocrysts growth to be wide (2\(\sim\)13 km). Our data suggest the presence of a vertically elongated magma chamber whose top is nearly solidified but highly vesiculated; this chamber has probably grown and re-mobilized by repeated injections of a small amount of hot dacitic magma originated from the depth.  相似文献   
9.
This study has demonstrated a reliable method of quantifying the total mass of litter on a beach. It was conducted on Ookushi beach, Goto-Islands, Japan, and uses a combination of balloon-assisted aerial photography and in situ mass measurements. The total mass of litter over the beach was calculated to be 716 ± 259 kg. This figure was derived by multiplying the litter-covered area (calculated using balloon-assisted aerial photography) by the mass of litter per unit area. Light plastics such as polyethylene made up 55% of all plastic litter on the beach, although more work is needed to determine whether lighter plastics are transported to beaches more readily by winds and ocean currents compared with heavier plastics, or whether lighter plastics comprise a greater percentage of marine litter. Finally, the above estimates were used to calculate the total mass of metals released into coastal ecosystems via plastic litter on beaches.  相似文献   
10.
The oxygen isotope ratios (δ18O) of most igneous zircons range from 5 to 8‰, with 99% of published values from 1345 rocks below 10‰. Metamorphic zircons from quartzite, metapelite, metabasite, and eclogite record δ18O values from 5 to 17‰, with 99% below 15‰. However, zircons with anomalously high δ18O, up to 23‰, have been reported in detrital suites; source rocks for these unusual zircons have not been identified. We report data for zircons from Sri Lanka and Myanmar that constrain a metamorphic petrogenesis for anomalously high δ18O in zircon. A suite of 28 large detrital zircon megacrysts from Mogok (Myanmar) analyzed by laser fluorination yields δ18O from 9.4 to 25.5‰. The U–Pb standard, CZ3, a large detrital zircon megacryst from Sri Lanka, yields δ18O = 15.4 ± 0.1‰ (2 SE) by ion microprobe. A euhedral unzoned zircon in a thin section of Sri Lanka granulite facies calcite marble yields δ18O = 19.4‰ by ion microprobe and confirms a metamorphic petrogenesis of zircon in marble. Small oxygen isotope fractionations between zircon and most minerals require a high δ18O source for the high δ18O zircons. Predicted equilibrium values of Δ18O(calcite-zircon) = 2–3‰ from 800 to 600°C show that metamorphic zircon crystallizing in a high δ18O marble will have high δ18O. The high δ18O zircons (>15‰) from both Sri Lanka and Mogok overlap the values of primary marine carbonates, and marbles are known detrital gemstone sources in both localities. The high δ18O zircons are thus metamorphic; the 15–25‰ zircon values are consistent with a marble origin in a rock-dominated system (i.e., low fluid(external)/rock); the lower δ18O zircon values (9–15‰) are consistent with an origin in an external fluid-dominated system, such as skarn derived from marble, although many non-metasomatized marbles also fall in this range of δ18O. High δ18O (>15‰) and the absence of zoning can thus be used as a tracer to identify a marble source for high δ18O detrital zircons; this recognition can aid provenance studies in complex metamorphic terranes where age determinations alone may not allow discrimination of coeval source rocks. Metamorphic zircon megacrysts have not been reported previously and appear to be associated with high-grade marble. Identification of high δ18O zircons can also aid geochronology studies that seek to date high-grade metamorphic events due to the ability to distinguish metamorphic from detrital zircons in marble.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号